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Abstract—We present the preliminary results on developing
a weighted N-version programming (NVP) scheme for ensuring
resilience of machine learning based steering control algorithms.
The proposed scheme is designed based on the fusion of outputs
from three redundant Deep Neural Network (DNN) models,
independently designed using Udacity’s self driving car challenge
data. The improvement in reliability compared to single DNN
models is evaluated by measuring the steering angle prediction
accuracy in the presence of simulated perturbations on input
image data caused by various environmental conditions.
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I. INTRODUCTION

At the core of autonomous vehicle (AV) technologies are
machine learning (ML) models that enable path planning and
control based on perception of the surrounding environment.
Lane Keep Assistance System (LKAS) is a key AV component
utilizing computer vision that processes road images, locates
lane markers, and adjusts steering angle to keep the vehicle
inside the lanes. Many recent studies demonstrate the vulner-
ability of Deep Neural Network (DNN) models to adversarial
or accidental perturbations [1] [2] [3] that might corrupt AV
camera input. However, to the best of our knowledge, no prior
work has studied solutions for improving the resilience of AVs
to such perturbations.

This paper presents preliminary results on using redundancy
to improve the resiliency of DNN-based steering angle pre-
diction algorithms in AVs. We propose an N-version program-
ming (NVP) inspired approach based on fusion of outputs from
different DNN models independently designed with different
numbers of layers and parameters. In particular, we combine
three independently developed community models from Udac-
ity’s self driving car project using a weighted voting scheme to
improve the performance of the individual DNNs. The system
resilience is assessed by injecting increasing levels of image
perturbations to the DNN inputs, measured by the structural
similarity index (SSIM) [4]. Our proposed NVP scheme
addresses asymmetry in the reliability of different community
models as well as their continuous outputs (steering angles).

The preliminary results show two major improvements.
First, weighted model fusion on average achieves 40% higher
accuracy than the individual algorithms in predicting steering
angles, as measured by the root mean square error (RMSE)
averaged across all different algorithms and types of pertur-
bation. Second, the voter provides robustness to counteract
the failure of a single DNN model. The improved accuracy

and reliability of the combined system indicates a promising
venue to augment the current “sensor fusion” practice in AV
technology with “model fusion”.

II. SYSTEMS OVERVIEW AND METHODOLOGY

We used three independently designed DNN-based steering
angle prediction algorithms (Chauffeur, Autumn, and Rambo),
from Udacity’s challenge [5] in this work. Fig. 1 illustrates
the high-level design of our proposed model fusion algorithm
that combines these three networks. These DNN models
varied in implementation: The Chauffeur model includes one
convolutional neural network (CNN) model for extracting
features from the image, and one long short-term memory
(LSTM)/recurrent neural network (RNN) model for predicting
steering angle; the Autumn model consists of 5 CNNs and an
LSTM/RNN layer; the Rambo model consists of three CNNs
whose outputs are merged using a final layer.

For evaluating the proposed system, we perturb the images
by adding real-world environmental effects, feed the faulty
images to the networks, record predicted steering angles, apply
the weighted voting approach, and measure the final steering
angle. Each model (and our combined system) was evaluated
based on RMSE steering angle performance compared to a
ground truth recording, as shown below:

RMSE :=

√∑n
i=1(θi pred − θi ground truth)2

n
(1)

A. Image Perturbation and Quality Assessment

With the images synthesized from one of Udacity’s test-
ing sets, we simulated real-world environmental scenarios
affecting image quality (rain, fog, snow, contrast change,
and brightness change) by creating image perturbations using
the technique presented in [6]. The perturbation levels were
increased until the image quality level measured by SSIM
reached to 0.6. Figs. 2 and 3 show examples of simulated
weather conditions and the performance of the individual
algorithms.

B. Weighted N-version Programming

Adaptation of the N-version programming approach to DNN
models raises two major questions. First, how do we appropri-
ately weigh each neural network’s reliability? To account for
different model performances, the voting process weighs each
model’s output inversely proportionally to its RMSE calculated



Fig. 1: High-level design of the proposed method

Fig. 2: Steer angles (rain)

Fig. 3: Steer angles (snow)
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Fig. 4: Effects of NVP on the faulty images (Simulated snow scenario), (a)
RMSE (weighted voting), (b) RMSE (NVP+weighted voting)

from prior training data (this simple scheme is referred to as
weighted voting in Figure 4a):

θvote =
θ1/ε1 + θ2/ε2 + θ3/ε3

1/ε1 + 1/ε2 + 1/ε3
(2)

Second, how will the voter identify agreement and detect
faults? To deal with the steering angle outputs from the
DNN models, we use each model’s maximum steering angle
deviation from the ground truth, calculated from prior training
data, as a maximum deviation threshold for voter acceptance.

In the NVP+weighted voting scheme, the steering angle
differences between each pair of DNN models is calculated,
and compared against the maximum deviation thresholds. If a
particular model is faulty, it will affect the differences between
the two corresponding steering angles as shown below.

∆θ12 ≈ ∆θ13 6≈ ∆θ23 =⇒ θ1 6≈ θ2 ≈ θ3 (3)

In the case of this single error detection, the voter can
effectively correct faults by excluding the value in its voting
algorithm (Eq. 2). Furthermore, if two steering angle predictors
are faulty, then all three steering angle differences will not be
equal within the deviation thresholds and, thus, a double error
is identified:

∆θ12 6≈ ∆θ13 6≈ ∆θ23 =⇒ double error (4)

III. PRELIMINARY RESULTS

Fig. 4 (a) and (b) represent, respectively, the RMSE of
the weighted model fusion without (just Eq. 2) and with Eq.
3’s outlier rejection compared to baseline algorithms (bottom
legend line). The NVP plus weighted voting performed sub-
stantially better in this scenario than using just Eq. 2.

Fig. 5a compares the predicted steering angles and RMSEs
of the three networks versus the proposed method when
running on rainy images. Fig. 5b illustrates the overall RMSE
measured for the perturbed images and original images. In case
of perturbed images our proposed method shows substantially
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Fig. 5: (a) Comparison of the proposed method with three networks in case of
rainy images, (b) Overall RMSE of the three networks and proposed method

improved RMSE when compared to the three baseline net-
works. Notably, while the Chaffuer model struggled with the
snowy images, the Rambo model struggled with the foggy
images. On the other hand, the Autumn model performed
well consistently across different scenarios. However, our three
version model fusion scheme consistently discarded faulty
models and achieved better performance than the Autumn
model. On average our model achieves 40% lower RMSE
score compared to the average RMSE of different models
across different perturbation scenarios. These results indicate
the potential of the proposed NVP-inspired model fusion
technique in improving the resilience of DNN-based steering
control in AVs.

However, the cost of developing an NVP model is poten-
tially high, requiring training individual DNN models with
different structures and parameters. The degree of indepen-
dence of the individual DNN models and their failure rates
is affected by the diversity of datasets used for training. A
more in-depth analysis of the cost associated with the proposed
NVP model and the improvement in reliability compared to
individual models, given different DNN structures, training
datasets, and failure rates are the subject of future work.
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