
Reliability in Application Specific Mesh-based NoC Architectures

Fatemeh Refan1, Homa Alemzadeh1, Saeed Safari1, Paolo Prinetto2, Zainalabedin Navabi1

1 CAD Research Laboratory
Department of Electrical and Computer Engineering

School of Engineering, University of Tehran
Tehran,Iran

{refan, homa, safari, navabi}@cad.ece.ut.ac.ir

2 Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
Paolo.Prinetto@polito.it

Abstract

Networks on Chips (NoCs) provide a mechanism for

handling complex communications in the next genera-
tion of integrated circuits. At the same time, lower
yield in nano-technology, makes self repair communi-
cation channels a necessity in design of digital systems.
This paper proposes a reliable NoC architecture based
on specific application mapped onto an NoC. This ar-
chitecture is capable of recovering from permanent
switch failures via replacing them by neighboring
switches. This method has hardware and power con-
sumption overhead, but significantly improves reliabil-
ity and has a very little effect on the performance of the
system. We suggest a reliability analysis method based
on the combinatorial reliability models and use it to
evaluate our proposed fault-tolerant NoC architecture.

1. Introduction

By increasing the complexity of integrated cir-
cuits, NoCs are becoming the main solution for ad-
dressing the communication challenges in SoC archi-
tectures. Using NoCs leads to more performance im-
provement than the traditional communication struc-
tures [1]. On the other hand, this fast scaling in tech-
nology has caused rapid increase of the probability of
facing faults in different NoC components [2].

Two kinds of errors may generally occur in an
NoC: Transient and Permanent errors. Recovery tech-
niques have been proposed for each kind of these er-
rors. The most common transient error recovery tech-
nique is retransmission mechanism following error de-
tection techniques like coding [3]. On the other hand,
most researches targeting at permanent error recovery
use dynamic rerouting to bypass the failed hardware.
Several rerouting schemes have been proposed that ei-
ther update the routing tables [3], [4], [5], and/or add
extra information to the packets aiming at fault tolerant
routing strategy. The other important self-healing me-
thod is based on hardware redundancy, and spare inser-

tion. Method presented in [6] is a self-repair method
based on using redundant links and cross-points to in-
crease yield and reliability for NoC interconnects. In
[7] authors take advantage of both information and
hardware redundancy for tolerating transient, perma-
nent and intermediate faults. In [8] performance has
been improved using long-range links which can be
applied for link and router failure tolerance too.

The main problem with the current techniques is
that if a switch fails, considering mesh architecture, re-
covery cannot be accomplished using rerouting only.
In addition hardware redundancy is needed to repair
the lost connection to the network of the processing
element directly connected to the failed switch.

The next issue to consider is the architecture eval-
uation metric. Fault-tolerant architectures can be eva-
luated from reliability and performance aspects. Most
related researches have used performance as their eval-
uation factor [3], [4], [5]. Reliability can be evaluated
analytically or using simulation. E.g. [9] has evaluated
reliability of an NoC with dynamic power management
as a function of time by means of simulation.

In this paper we present a fault tolerant mesh-
based NoC architecture with the ability of recovering
from single permanent switch failures by adding a re-
dundant link between each processing element and one
of its neighboring switches. This architecture does not
require any repeater modules, as those used in [8]. Also
contrary to [6], here fault detection/correction strate-
gies are accompanying the hardware redundancy we
add to the architecture. This is done by proposing a de-
terministic low-cost routing/re-routing strategy. We al-
so estimate the improvement in reliability of presented
architecture using an application-specific routing-based
analytical model.

2. Background
This section presents background information for

understanding the rest of paper. The NoC model and
application mapping onto NoCs are discussed.

14th IEEE International On-Line Testing Symposium 2008

978-0-7695-3264-6/08 $25.00 © 2008 IEEE

DOI 10.1109/IOLTS.2008.53

207

14th IEEE International On-Line Testing Symposium 2008

978-0-7695-3264-6/08 $25.00 © 2008 IEEE

DOI 10.1109/IOLTS.2008.53

207

2.1. NoC Architecture
The primary NoC topology which is used in this

paper is a simple regular mesh-based architecture.
Figure 1.a shows a 3 3 version of our architecture. In
this architecture each switch consists of five identical
input/output ports and a routing logic as shown in
Figure 1.b. Each port is a bidirectional link with a cir-
cular FIFO on its input side.

Out Port 0

In Port 0

Figure 1 (a) A 3×3 Mesh-based NoC, (b) NoC Switches

We have considered only the most common fields
for the structure of NoC packets. This includes a head-
er that determines the identification number, source,
and destination addresses, and payload containing data
in addition to some information about the path the
packets pass through. Packets are selected based on
round-robin algorithm spanning various switch FIFOs
in sequence and are routed using the XY routing algo-
rithm. Each processing element in this NoC consists of
a processing unit and a network interface. The network
interface part is responsible for communicating with
the switch directly connected to the PE by processing
and formatting the input and output packets.

2.2. Application Mapping onto an NoC
An application mapped onto an NoC can be repre-

sented as a Communication Task Graph (CTG). A
CTG is a directed acyclic graph which represents com-
putational modules (tasks) of the application and the
volume of communication between them. For model-
ing and simulation of running an input application on a
pre-selected NoC architecture, we should first schedule
the application tasks represented by a CTG and bind
them onto the corresponding processing elements of
the target NoC [10].

Figure 2 CTG of a Complex Multimedia Application (MMS)

[10]

Figure 2 shows a CTG of a complicated MMS ap-
plication, including an MP3-H263 encoder/decoder.
This system is partitioned, scheduled and bounded to
16 distinct ASIC, Memory, CPU, and DSP cores [10].

3. Fault Tolerant NoC Architecture
In the NoC model presented in Section 2, each

processing element is connected to a single switch. If a
switch failure occurs in this architecture, the entire sys-
tem would face two problems: First, the switch's di-
rectly connected processing element becomes inacces-
sible; Second, the failed switch cannot be used any-
more for routing and passing packets.

The fault-tolerant NoC architecture we propose
here recovers from these switch failures by making
modifications to the original NoC.

3.1. NoC Architecture Modifications
In our new NoC architecture a spare interconnect

is added between each PE and one of its neighboring
switches. This architecture prevents a processing ele-
ment from becoming inaccessible when its switch fails.

For each processing element there is more than
one neighboring switch to be connected to with a spare
link (e.g. PE5 of Figure 1 has 8 choices: Switches 1, 2,
3, 4, 6, 7, 8, and 9). To maintain the NoC architecture
still regular and minimize the hardware cost, we only
choose one of the possible spare links for a processing
element. The best spare link for each PE is chosen
among different possibilities based on an application
specific performance analysis performed before pro-
gramming the NoC. The target fault-tolerant architec-
ture is then configured and programmed based on this
selection done for all the processing elements.

3.2. NoC Components Modifications
The proposed fault tolerant architecture in addition

to the discussed spare links, introduces some modifica-
tions in the NoC processing elements, switches, and
packets:
 Processing elements; A simple logic is added to the
network interface of each PE, storing the ID of its al-
ternative switch.

 Switches; Proper logic is needed to guarantee that a
switch, even when faulty, is capable of informing its
neighbors of its fault status. Storing the address of
the chosen alternative switch and logic for changing
the routing algorithm for bypassing the switches is
also necessary in each switch.

 Packets; Two new control fields for each packet are
necessary: an n-bit field (in a n×n NoC) named FSN
(Faulty Switch Number) for keeping the location of
the faulty switch in the NoC, and a flag called CR
(Change Routing) for indicating cases in which the
routing should be changed.

208208

4. Online Fault Recovery
We assume that fault detection is done by self test-

ing facilities embedded in each switch responsible for
continuously testing its operation. A switch is made
capable of informing its neighbors of its faulty status
by setting a fault_status flag and sending them the ID
of the switch used as its alternative. This flag is
checked by the neighboring switches and processing
elements before starting any communication with the
switch.

The re-routing strategy proposed here uses three
fields of a packet: DST, FSN, and CR. The value of the
DST field always shows the ID of the destination
switch. FSN field is set to the ID of the destination PE
when the packet is re-routed. Finally, the CR field indi-
cates whether the routing should be XY or YX. The de-
fault routing mechanism is XY, but it is changed to YX
to prevent deadlock in some situations explained later.

Figure 3 Failure of SW7: (a) Rerouting path for a vertical
case, (b) Rerouting path for a horizontal case, (c) PE7 as

Source, (d) PE7 as Destination

Consider switch 7 of Figure 3 as an example of a
faulty switch detected in the NoC. If we choose to con-
nect its PE to SW6 with a spare link, PE6 is called the
local PE, and PE7 the spare PE of SW6. When PE7 or
each of SW3, SW6, SW8, SW11 intend to send a packet to
SW7, they check its fault_status flag to make sure that
this switch works properly. Finding out that switch
SW7 is faulty, the FSN field of the packet is set to the
ID of faulty switch, and the destination is changed to 6
if it is PE7. Also if the selected output port is horizontal
(vertical) ports 2 or 4 (1 or 3), the packet is sent to one
of the vertical (horizontal) output ports 1 or 3 (2 or 4);
we call this situation horizontal (vertical) pass. Fur-
thermore in the vertical pass the CR field of the packet
is set to change the routing strategy from XY to YX al-
gorithm. The selection of the new output port is done
on the basis of the destination switch ID. In the case of
horizontal (vertical) pass, we have two situations:

1. If the destination is in the same row (column) as
the current, output port 1(4) or port 3(2) are
chosen with the probability of pu(pl) and pd(pr),
respectively, where pu(pl) = 1-pd(pr). For exam-

ple paths (a) and (b) of Figure 3 demonstrate the
right and down paths of a vertical and a hori-
zontal pass respectively.

2. If the destination has a different row (column)
from the row (column) of the current switch, the
output port is chosen based on the destination
row (column). If the destination row (column) is
above (in left hand of) the current row (col-
umn), port 1(4) and in the other case port 3(2) is
chosen. Paths (c) and (d) of Figure 3 are two
examples of this situation where the source and
destination switch are faulty, respectively.

In situation 2 of the vertical pass (e.g. Path d), re-
routing packet based on XY algorithm causes that the
next switch in the adjacent column (SW2) send back
the packet to the sender switch (SW3) because the
sender is in the column of destination (SW7). This will
continue forever, leading to a deadlock situation. The
CR field is for preventing this situation by telling the
next switches to route the packet according to YX algo-
rithm instead of XY.

Using the above strategy, always the shortest path
is chosen, the packet moves towards the destination in
each step, and the faulty switch is encountered only
once, thus avoiding deadlocks.

When a packet arrives at the destination switch it
is sent to the local PE or the spare one based on the
FSN field. If FSN is set, the packet is routed to the
spare PE, otherwise the local PE is the destination.

The proposed reconfiguration capabilities will be
implemented as additional look-up tables and logic in-
side the NoC switches and processing elements.

5. Spare Link Selection
This section shows the method we use for spare

link selection to find the best fault-tolerant configura-
tion for an application specific NoC. The best spare
links are selected based on a high-level simulation be-
fore programming the NoC. The scheduled and
bounded CTG of the application to be mapped onto
NoC is taken as input. Then assuming that there can
only be a single permanent failure in the switches, we
simulate the selection of different possible alternative
switches for each PE and select the ones which lead to
the best overall performance in terms of the average re-
sponse time of the system.

The NoC simulation model is implemented using
SystemC TLM 2.0 [11] library. Since the critical bot-
tleneck of a system is the communication performance,
we ignore the precise functionalities and computation
details of the processing elements in our model. The
worst case response time of the destination processing
elements and the average response time of the system
are considered as the evaluation parameters. Since our

209209

models are at the transactional level, and do not con-
sider detailed timing annotations at the lower abstrac-
tion levels, only a rough estimation of the delay is suf-
ficient for comparison of the results. The delay for
each packet is calculated after its arrival to the destina-
tion based on the timing information it carries includ-
ing the number of passed switches, inter-switch links
and network interface to switch wrappers, processing
elements observed, and the turns wasted waiting in the
input FIFOs of the switches as shown in Eq. 1.

 SWSWFIFOFIFOPEPE

NINILINKLINK

nt+ nt+ nt+
 n t+ n t_

×××
××=DelayPacket Eq. 1

The average response time of the system is esti-
mated by the maximum delays of last packets arriving
at the destination processing elements.

Following this simulation, we need to choose only
one spare link for each PE. While the ideal alternative
switch for several PEs may be the same, each switch is
limited to having only one spare link connected to it.
To solve this problem we use an exhaustive search al-
gorithm to explore the space of different spare link se-
lection possibilities for the PEs of an NoC. We choose
the best alternative switches for all the PEs for the in-
put application based on the average response time of
the system.

Figure 4 CTGs of VOPD and MWD [12] including mappings

We consider three multimedia applications as our
case studies in this work: MP3 and H263 encoder and
decoder (MMS) presented in [10], and Video Object
Plane Decoder (VOPD) and Multi-Window Displayer
(MWD) used in [12]. Figure 2, Figure 4.a, and b show
the communication task graphs of these applications
respectively.

Table 1 Spare Link Selections
Faulty Switch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MMS 2 5 7 3 1 10 4 11 6 13 14 8 9 15 16 12

VOPD 5 1 7 3 9 10 2 4 6 11 12 8

A
lte

r
Sw

itc
he

s

WMD 2 1 4 8 6 3 10 12 5 9 7 11

We greedily mapped these scheduled and bounded
CTGs onto 4 4 and 3 4 mesh-based NoC architec-
tures. These mappings are shown by numbers inside
each core of Figure 2 and Figure 4.

Table 1 shows the alternative switch selection results
for MMS, VOPD, and MWD applications.

6. Analysis and Results
This section shows how we analyze the proposed

fault-tolerant architecture in terms of reliability and
performance and present experimental results for three
multimedia applications introduced earlier.

6.1. Reliability Evaluation Method
The reliability evaluation method that we present

here is application dependent and based on the routing
strategy used in the NoC. As discussed earlier, the
CTG of an application mapped onto the NoC defines
the communication behavior between the processing
cores and determines the source and the destination of
packets traveling through an NoC. Based on the rout-
ing strategy, for each pair of source and destination
PEs there may exist one or more paths in the NoC each
consisting of a number of switches. A packet traverses
a path by passing through this set of intermediate
switches.

The application mapped onto NoC cannot work
properly unless all the packets reach to their destina-
tions according to the behavior expected by the appli-
cation’s CTG. Therefore we can consider the NoC sys-
tem as a set of paths between the cores so that failure
of any of them causes the entire system to fail. So, like
what is defined for the reliability of series systems
[13], we define the reliability of NoC, RNoC, as the
product of reliabilities of all the paths Ri,j between the
cores in the CTG, as shown in Eq. 2. It is worth men-
tioning that since each path between two cores in the
CTG is used only once, its reliability should not be
raised to any power greater than 1. So in Eq. 2 we re-
place every occurrence of Rk

i,j by Ri,j.
 ∏

∈
=

CTGji
jiNOC RR

),(
,

 Eq. 2

Ri,j for each pair of source and destination PEs,
(i,j), as demonstrated by Eq. 3, is defined as the prob-
ability of using an operational path for the communica-
tion between source i and destination j in the NoC.
This is like what is defined as path reliability in point-
to-point networks [14].

 ∏∑ ==
=

S

m m
N

k kji RpR
11, Eq. 3

N is the number of paths between PEi and PEj and
pk is the probability of traversing kth path for reaching
to PEj from PEi. Since we just consider switch failures
and assume that PEs do not fail, the reliability of kth
path between PEi and PEj can be defined as the prob-
ability of the proper working of all the switches trav-
ersed on this path. S is the number of switches and Rm
is the reliability of mth switch in path k.

210210

6.2. NoC Reliability Analysis
In this section we calculate the reliability of the

proposed NoC model before and after adding spare
links. In the original NoC architecture of Figure 1 there
is only one possible path between each pair of PEs in
the NoC. This path consists of switches determined by
XY routing algorithm. Therefore based on Eq. 2 the
overall reliability of NoC is equal to the product of re-
liabilities of all the paths from sources to destinations.
Therefore the final equation of NoC reliability equals
to the product of reliabilities of all switches, as shown
in Eq. 4. In this equation S is the total number of
switches in the NoC and RSWi is the reliability of SWi.

 ∏ =
= S

i swsys i
RR

1
 Eq.4 4

After making the NoC architecture fault-tolerant a
number of paths will be added to the normal paths tak-
en by XY routing which should be considered in the
NoC reliability formula. Referring again to the exam-
ple of Figure 3, the paths between PE11 and PE3 are
shown in Figure 5.a. If SW7 fails (the black block),
there would be two new alternative paths from the right
or left each with determined probabilities of pr and pl.
Note that these new paths will only be used when SW7
fails; thus according to conditional probability, (1-R7)
is multiplied to the reliability of them. Thus based on
the Eq. 2 from the previous section, the reliability of
the path between PE11 and PE3 (R11,3), considering only
the possibility of failure in SW7 will change to:

 R11,3=R11[R7+(1-R7) (prR12R8R4+p1R10R6R2)]R3 Eq. 5

Eq. 5 shows a reliability increase in the path be-
tween PE11 and PE3 compared to the reliability before
making the modifications to NoC, which was:

 R11,3 = R11 R7 R3 Eq. 6

Figure 5.b, c and d show the normal and alterna-
tive paths for three other cases of Figure 3. The reli-
ability equation in each case is similar to Eq. 5.

(a) (b)

(c) (d)

Figure 5 Reliability Diagrams for cases of Figure 3

The possibility of failure in each of NoC switches
are considered in the final reliability equation of the
fault-tolerant NoC. According to conditional probabil-
ity, the reliability of each path in NoC is equal to the
reliability of path in the case of no failure, in addition
to the reliability of new re-routing paths used when one
of switches in the path fails. The complete reliability

switches in the path fails. The complete reliability equ-
ations for the examples of Figure 5, based on selected
alternative switches of Table 2, are shown in Table 3.

Table 2 Spare link selection of Figure 3
Faulty SW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Alternate SW 5 1 2 3 9 10 6 4 13 11 7 8 14 15 16 12

Table 3 Reliability equations of paths of Figure 3

R11,3
R11R7R3+(1- R11)R7R3 + (1-R7)R11 (prR12R8R4
+pl R10R6R2)R3+(1-R3)R11R7R6R2

R6,8
R6R7R8+(1-R6)R10R11R12R8+(1-R7) R6 (puR2R3R4
+pdR10R11R12)R8+(1-R8)R6R7R3R4

R7,15
R7 R11R15+(1-R7)R6R10R11R15+(1-R11)R7(pr R8R12R16
+plR6R10R14)R15+(1-R15)R7R11R12R16

R1,7
R1R2R3R7+(1-R1)R5R6R7+(1-R2)R1R5R6R7
+(1-R3)R1R2R6R7+(1-R7)R1R2R3R6

According to the above explanations the path reli-
ability equation of Eq. 2 can be simplified, and based
on equation Eq. 1 the reliability of our proposed fault-
tolerant NoC architecture will be equal to:

∏ ∏ ∑∈ = =
⋅−+=

CTGji

S

k kji
S

k kkNOC FailsSWRRRR
),(1 ,1

])|()1([Eq. 7

7. Experimental Results
The reliability equations extracted for each of our

three multimedia applications according to Eq.7 and
their corresponding reliability curves based on differ-
ent switch reliability values are shown in Figure 6.a, b,
and c, respectively. In order to compare the reliability
achieved by the proposed fault tolerant architecture,
the results of the original NoC are also shown.

As simulation results show, the reliability of NoC
for all the three experimented applications has been
multiplied by about 3 and 2 when the reliability of the
NoC switches is 0.9 and 0.95 respectively (Table 4).
Furthermore, our fault-tolerant architecture leads to a
system reliability of equal and even greater than the re-
liability of a single NoC switch for switch reliabilities
greater than 0.96-0.98. As Figure 6.d shows, the reli-
ability of NoC system for the MP3-H264 application
crosses the NoC switch reliability at 0.987. This means
that for NoC switches with reliabilities higher than
0.987 the overall reliability of the fault-tolerant NoC is
more than the reliability of a single NoC switch used in
the system. The cross points for VOPD and MWD ap-
plications are switch reliabilities of 0.969 and 0.964.

Furthermore, in order to have a performance esti-
mation of the proposed reliable architecture, we use the
TLM NoC simulator of Section 5 and estimate the
overall average response time of system using Eq. 1.
The overall performance in terms of average response
time of system has decreased by just 2-3 percent for
VOPD and MWD applications (Table 4). However,
since directing packets through alternative switches
sometimes leads to traveling in shorter paths from
source to destination cores, we even see a performance
improvement in the results for MP3-H264 application.

211211

(a) (b) (c) (d)

Figure 6 (a) MP3/H263 System Reliability: R(t) = 13.625R16- 30.75R15+8.625R14+8.5R13+R12

(b) VOPD System Reliability: R(t) = 5R12- 12.5R11+7R10-4.5R9+6R8
(c) MWD System Reliability: R(t) = 2R12- 9R11+19R10-27R9+16R8

(d) Cross Point of Switch and NoC Reliability for MMS System

Table 4 Reliability Improvement and Performance Cost for
MP3-H264, VOPD and MWD

8. Conclusions
To recover from permanent single faults in NoC

switches, a fault-tolerant semi-regular NoC architec-
ture has been proposed. In this architecture, a spare
link is added between each processing element and one
of its neighboring switches and a re-routing strategy is
developed to bypass the failed switch. The best spare
links to be added to this architecture are chosen by an
architecture exploration algorithm, based on perform-
ance measurements achieved from high-level simula-
tion of the target NoC. To estimate the achieved im-
provement in reliability, an application specific rout-
ing-based reliability analysis method is developed.

For our experimented applications, the analytical
results show a reliability improvement of a factor of 2
to 3 for the entire NoC when the switch reliabilities are
between 0.9 and 0.95. The overall performance of the
architecture in terms of average response time of sys-
tem has decreased by just 2-3 percent. The main over-
head of the proposed fault-tolerant architecture is the
probable increase in the power consumption and hard-
ware due to the additional checks for detecting failed
switches and re-routing packets.

The reliability analysis method presented here can
be used in other NoC architectures with different to-
pologies and routing strategies for evaluation of more
complex systems.

9. References
[1] T. Bjerregaard and S. Mahadevan. “A survey of research
and practices of network-on-chip,” ACM Computing Surveys,
vol. 38, no.1, pp.1-51, 2006.
[2] D. Park, C. A. Nicopoulos, J. Kim, N. Vijaykrishnan, and
C. R. Das, “Exploring Fault-Tolerant Network-on-Chip Ar-
chitectures,” in Proceedings of Dependable Systems and
Networks , 2006, pp. 93-102.

[3] M. Ali, M. Welzl, S. Hessler, and S. Hellebrand, “An Ef-
ficient fault tolerant mechanism to deal with permanent and
transient failures in a network on chip,” International Jour-
nal of High Performance Systems Architecture , vol. 1, no. 2,
pp. 113-123, 2007.
[4] A. Shahabi, N. Honarmand, H. Sohofi and Z. Navabi,
“Degradable mesh-based on-chip networks using program-
mable routing tables,” IEICE Electron. Express, vol. 4,
no. 10, pp.332-339, 2007.
[5] P. Rantala, T. Lehtonen, J. Isoaho, J. Plosila: “Fault-
tolerant Routing Approach for Reconfigurable Networks-on-
Chip,” in Proceedings of International Symposium on Sys-
tem-on-Chip, 2006, pp.1-4.
[6] C. Grecu, A. Ivanov, R. Saleh, and P. P. Pande, “NoC in-
terconnect yield improvement using crosspoint redundancy, ”
in Proceedings of the 21st IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, 2006, pp. 457–
465.
[7] T. Lehtonen, P. Liljeberg and J. Plosila, “On-line Recon-
figurable Self-Timed Links for Fault Tolerant NoC,” VLSI
Design, vol. 2007, Article ID 94676, 13 pages, 2007.
[8] U. Y. Ogras, and R. Marculescu. “It’s a small world after
all: NoC Performance Optimization via Long-range Link In-
sertion,” IEEE Trans. on Very Large Scale Integration Sys-
tems, Special Section on Hardware/Software Codesign and
System Synthesis, vol. 14, no.7, pp.693-706, July 2006.
[9] T. Simunic, K. Mihic, G. De Micheli, “Reliability and
Power Management of Integrated Systems,” in Proceeding of
Euromicro Symposium on Digital System Design, 2004, pp.5-
11.
[10] J. Hu, and R. Marculescu. “Energy-Aware Mapping for
Tile-based NoC Architectures Under Performance Con-
straints,” in Proceeding of Asia & South Pacific Design Au-
tomation Conference, 2003, pp. 233- 239.
[11] OSCI SystemC TLM 2.0 Standard,
http://www.systemc.org/projects/tlm/document/TLM_2.0_Ov
erview/en/l
[12] A. Jalabert, S. Murali, L. Benini, G. De Micheli, “xpipe-
sCompiler: A Tool for Instantiating Application Specific
Networks on Chips”, in Proceedings of the conference on
Design, automation and test in Europe, 2004, p.20884.
[13] I. Koren and C. M. Krishna, Fault-Tolerant Systems,
Morgan-Kaufman, 2007.
[14] S. Hariri and C. S. Raghavendra, “SYREL: A Symbolic
Reliability Algorithm Based on Path and Cutset Methods,”
IEEE Transactions on Computers, Vol. C-36, pp. 1224–
1232, October 1987.

Reliability Improvement Application RSW=0.9 RSW=0.95
Performance

Cost
MP3-H264 229.04% 95.51% -3.36%

VOPD 172.52% 71.62% 2.8%
MWD 180.63% 73.13% 1.22%

212212

