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Abstract

Purpose: We propose a formal framework for the model-

ing and segmentation of minimally-invasive surgical tasks using

a unified set of motion primitives (MPs) to enable more

objective labeling and the aggregation of di↵erent datasets.

Methods: We model dry-lab surgical tasks as finite state machines,

representing how the execution of MPs as the basic surgical actions

results in the change of surgical context, which characterizes the

physical interactions among tools and objects in the surgical envi-

ronment. We develop methods for labeling surgical context based on

video data and for automatic translation of context to MP labels. We

then use our framework to create the COntext and Motion Primi-

tive Aggregate Surgical Set (COMPASS), including six dry-lab surgical

tasks from three publicly-available datasets (JIGSAWS, DESK, and

ROSMA), with kinematic and video data and context and MP labels.

Results: Our context labeling method achieves near-perfect

agreement between consensus labels from crowd-sourcing and

expert surgeons. Segmentation of tasks to MPs results in the

creation of the COMPASS dataset that nearly triples the
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amount of data for modeling and analysis and enables the

generation of separate transcripts for the left and right tools.

Conclusion: The proposed framework results in high quality labeling

of surgical data based on context and fine-grained MPs. Modeling sur-

gical tasks with MPs enables the aggregation of di↵erent datasets and

the separate analysis of left and right hands for bimanual coordination

assessment. Our formal framework and aggregate dataset can support the

development of explainable and multi-granularity models for improved

surgical process analysis, skill assessment, error detection, and autonomy.

Keywords: minimally invasive surgery, robotic surgery, surgical context,
surgical gesture recognition, surgical process modeling

1 Introduction

Surgical process models (SPMs) [17, 25] decompose surgical operations into
smaller units of activity such as steps, tasks, and gestures as shown in Figure
1. While modeling procedures with phases and steps enables standardization
and supports teaching [24], finer-grained modeling is needed for automated
assistance, skill assessment, and autonomy in robot-assisted surgery. Gestures,
defined as intentional activities with meaningful outcomes [6], are an impor-
tant analytical unit for skill evaluation [31, 37] and error detection [13, 14, 19].
Finer-grained activities called actions or motions [11, 26, 30] have also been
proposed to improve the understanding of tool-tissue interactions and their
relationship to di↵erent granularity levels. Recognition of motions can increase
the explainability of gesture-level analyses, improve error detection by identi-
fying the exact erroneous parts of gestures [13], and enable autonomy or error
recovery through the execution of motion primitives [5, 8].

The decomposition of tasks into gestures has been done with models such
as graphs [1, 34], statecharts [5], hybrid automata [4], and behavior trees [10]
for cooperative, autonomous, and supervisory systems in robotic surgery [22].
However, prior work has not explicitly modeled or formalized surgical context,
which is characterized by the status and interactions among surgical tools
and tissues/objects, and their relationship to motions, gestures, and surgical
workflow.

Additionally, while research has focused on standardized surgical ontolo-
gies [7], labeling methods [21], and action triplets [26], there is still a need
for a common surgical language and larger multimodal datasets to support
comparative analysis of activity recognition and error detection models [31].
The Online Resource provides a detailed summary of related work on ges-
ture and action definitions and datasets. As shown in Tables 1 and 2 in the
Online Resource, the definitions, numbers, and types of activity labels vary
in the existing datasets. The most commonly used dataset is JIGSAWS [6],
which contains kinematic data, videos, gesture labels, and surgical skill scores
for three dry-lab surgical tasks. However, only two of its tasks are labeled with
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similar sets of gestures. Other recently developed datasets such as DESK [20]
and V-RASTED [23] have defined their own sets of gestures while ROSMA
[29] is not labeled. Datasets such as these with both kinematic and video data
from a surgical robot/simulator are small and contain only a handful of trials
of a few simulated or dry-lab training tasks performed by a limited number of
subjects. This scarcity of data hinders training and generalization of machine
learning models. Also, most datasets on finer-grained actions have focused on
only video data from real surgery. While video data is required for labeling,
inclusion of kinematic data is valuable for safety analysis [13, 19], improved
recognition accuracy through multimodal analysis [28, 33], or when video data
is not available or is noisy due to smoke or occlusions [36].

Furthermore, annotating surgical workflow is costly and requires guidance
from expert surgeons [15], and the resulting labels may contain errors and
inconsistencies such as those identified in JIGSAWS [13, 32]. Label quality
and inter-rater agreement has not been examined when creating the existing
datasets. Also, the labels in these datasets do not di↵erentiate between activ-
ities performed by the left and right hands, which is important for detailed
skill assessment and analysis of bimanual coordination [2].

We address these challenges by making the following contributions:
• Proposing a novel formal framework for modeling surgical dry-lab tasks
with finite state machines using a standardized set of motion primitives
whose execution leads to changes in important state variables that make
up the surgical context. Context characterizes the physical interactions
among surgical tools and objects, and motion primitives represent basic
surgical actions across di↵erent surgical tasks and procedures.

• Developing a method for labeling surgical context based on video data of
dry-lab tasks that achieves near-perfect agreement between crowd-sourced
labels and expert surgeon labels, higher agreement among annotators than
using existing gesture definitions, and such that the context labels can be
automatically translated into motion primitive labels.

• Applying our framework and labeling method to create an aggregate
dataset, called COMPASS (COntext and Motion Primitive Aggregate
Surgical Set), which includes kinematic and video data as well as con-
text and motion primitive labels for a total of six dry-lab tasks from the
JIGSAWS [6], DESK [20], and ROSMA [29] datasets.

The tools for labeling surgical context based on video data, automated
translation of context to motion primitive labels, and the aggregated dataset
with context and motion primitive labels are publicly available at https://
github.com/UVA-DSA/COMPASS.

2 Methods

Our framework models surgical procedures as a language with a grammar dic-
tating how motion primitives (MPs) are combined to perform gestures and

https://github.com/UVA-DSA/COMPASS
https://github.com/UVA-DSA/COMPASS
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Surgical 
Procedure

Steps

Tasks

Gestures

Motion
Primitives

Partial Nephrectomy

Patient 
preparation

… Tumor 
excision

Renorrhaphy Hilar 
unclamping

Tumor 
retrieval

Suture large 
vessels

Secure suture 
with clips

Suture renal 
capsule

Secure suture 
with clips

G1 G5 G8 G2 G3 G6 G9 G4 … G6 G11

Grasp(L, Needle) Release(R, Needle) Untouch(R, Needle) Pull(Needle, Thread)

* Example motion 
primitive sequence

Context 
Changes

0XXXX -> 2XXXX XX2XX -> XX0XX XXX2X -> XXX0X 2XXX2 -> 2XXX0

Fig. 1 Surgical Hierarchy. Adapted from [13]

tasks, thus bridging the gap between semantic-less motions [25], and intent-
based gestures [6]. Our framework formally defines MPs, their relation to
surgical context and task progress, and their combination to perform dry-lab
tasks. We develop methods to objectively label surgical context and translate
context labels to MPs, and apply them to three publicly available datasets to
create the aggregated COMPASS dataset. We consider Suturing (S), Needle
Passing (NP), and Knot Tying (KT) from JIGSAWS [6]; Peg Transfer (PT)
on the da Vinci surgical robot from DESK [20]; and Pea on a Peg (PoaP) and
Post and Sleeve (PaS) from ROSMA [29] (see Figure 5).

2.1 Modeling Framework

2.1.1 Surgical Hierarchy

Surgical procedures follow the hierarchy of levels defined in [25] which provides
context for actions during the procedure, as shown in Figure 1. A surgical
operation can involve multiple procedures which are divided into steps.
Each step is subdivided into tasks comprised of gestures (also called sub-
tasks or surgemes) as shown in grammar graphs [1]. These gestures are made
of basic motion primitives such as moving an instrument or closing the
graspers, which e↵ect changes in important states that comprise the overall
surgical context.

2.1.2 Surgical Context

Surgical environments (in dry-lab or real surgical procedures) can be mod-
eled with state variables that characterize the status and interactions among
surgical instruments (e.g., graspers, scissors, electro-cautery) and objects
(e.g., needles, threads, blocks) or anatomical structures (e.g., organs, tissues)
over time. Changes in surgical context happen as the result of perform-
ing a set of basic MPs with the robot (either controlled by the surgeon or
autonomously). We focus on dry-lab training tasks and manually construct
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Fig. 2 a Finite state machine model representing the ideal performance of a
Needle Passing trial with context and MPs. In this task, the surgeon threads
the needle through four of the rings. b An example of the “Release” MP in
Needle Passing resulting in the change of state variables

finite state machines (FSMs) to model each task after reviewing the videos
to understand the general activities in the task. In these models, states rep-
resent context and transitions represent MPs. Figure 2a shows an example of
the FSM for NP. This representation of surgical tasks incorporates surgical
context into procedure modeling which is missing from previously proposed
models such as grammar graphs and Hidden Markov models [1] where hidden
states obscure lower-level actions.

Surgical context is defined using two sets of variables that can be observed
or measured using kinematic and/or video data from a surgical scene: (i) gen-
eral state variables relating to the contact and hold interactions between the
tools and objects in the environment, and (ii) task-specific state variables
describing the states of objects critical to the current task. We also define
independent state variables for the left and right tools to enable the genera-
tion of separate label sets for each side. There are four general state variables
and one task-specific state variable describing progress in the task as shown in
Figure 2b. S involves throwing four sutures and NP involves passing a needle
through four rings, so the needle, if held, can be “not touching”, “touching”,
or “in” the fabric or ring. KT involves tying two knots, so the thread can be
“wrapped” around the opposite grasper, in a “loose” knot, or a “tight” knot.
PT and PaS involve picking up a block and placing it on another post, so the
block can be “on” or “o↵” the peg. PoaP involves picking up a pea and placing
it on a post, so the pea, if held, can be “in the cup”, “stuck to other peas”,
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Table 1General motion primitives for changes in context: ‘L’ and ‘R’ represent
the left and right graspers as tools, ‘a’ is a generic object as listed in Fig 2b,
and ‘X’ can be any value.

Motion Primitive Context Change

Touch(L, a) X0XX ! XaXX
Touch(R, a) XXX0 ! XXXa
Grasp(L, a) 0aXX ! aXXX
Grasp(R, a) XX0a ! XXaX
Release(L, a) aXXX ! 0aXX
Release(R, a) XXaX ! XX0a
Untouch(L, a) XaXX ! X0XX
Untouch(R, a) XXXa ! XXX0

“not stuck to other peas”, or “on the peg”. In Figure 2b, the state 50202 indi-
cates that the left grasper is holding a ring, the right grasper is holding the
needle, and the needle is in the ring.

2.1.3 Motion Primitives

We define a unified set of six modular and programmable surgical MPs to
model basic surgical actions that lead to changes in the physical context. As
shown in Equation 1, each MP is characterized by its type (e.g., Grasp), the
specific tool which is used (e.g., left grasper), the object with which the tool
interacts (e.g., block), and a set of constraints that define the functional (e.g.,
di↵erential equations characterizing typical trajectory [8]) and safety require-
ments (e.g., virtual fixtures and no-go zones [3, 35]) for the execution of the
MPs:

MP (tool, object, constraints) (1)

Tools and objects are considered classes as in object-oriented programming
with attributes such as the specific type of tool and current position. MPs can
be further decomposed into the fundamental transformations of move/trans-
late, rotate, and open/close graspers which characterize low level kinematic
commands. These can be used for programming and execution of motions on
a robot for semi-autonomous surgery [5], which is the subject of future work.

Segmenting tasks into MPs allows the separation of actions performed by
the left and right hands and the generation of separate sets of labels. This can
support more detailed skill assessment, analysis of bimanual coordination, and
surgical automation [31].

Table 1 shows the set of universal MPs and corresponding changes to sur-
gical context applicable to all tasks which enables the generalizability of this
framework and allows activity recognition models to leverage these similari-
ties across tasks. Table 2 shows the sets of MPs and corresponding changes
to surgical context applied to specific dry-lab tasks. We focus on dry-lab tasks
where the tools are graspers, but do not model or analyze the MP-specific
functional and safety constraints here.
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Table 2 Task-specific motion primitives for changes in context: ‘L’ and ‘R’
represent the left and right graspers as tools, objects are encoded as in Fig 2b,
‘b’ is a value greater than 0, and ‘X’ can be any value.

Motion Primitive Context Change

Suturing/Needle Passing
Touch(2, 4/5) 2XXX0 ! 2XXX1
Touch(2, 4/5) XX2X0 ! XX2X1
Push(2, 4/5) 2XXX1 ! 2XXX2
Push(2, 4/5) XX2X1 ! XX2X2
Pull(2, 3) 2XXX2 ! 2XXX0
Pull(2, 3) XX2X2 ! XX2X0

Knot Tying
Pull(L, 3) 3XXX0 $ 3XXX1
Pull(R, 3) XX3X0 $ XX3X1
Pull(L, 3) Pull(R, 3) 3X3X1 ! 3X3X2
Pull(L, 3) Pull(R, 3) 3X3X2 ! 3X3X3

Peg Transfer and Post and Sleeve
Untouch(1, Post) XXXX0 ! XXXX1
Touch(1, Post) XXXX1 ! XXXX0

Pea on a Peg
Grasp(L, 1) 0XXX0 ! 1XXX1
Grasp(R, 1) XX0X0 ! XX1X1
Pull(L, 1) 1XXX1 ! 1XXX2
Pull(R, 1) XX1X1 ! XX1X2
Pull(L, 1) 1XXX1 ! 1XXX3
Pull(R, 1) XX1X1 ! XX1X3
Touch(1, 1) XXXX3 ! XXXX2
Untouch(1, 1) XXXX2 ! XXXX3
Touch(1, Peg) XXXX3 ! XXXX4
Untouch(1, Peg) XXXX4 ! XXXX3
Release(L, 1) 1XXXb ! 0XXX0
Release(R, 1) XX1Xb ! XX0X0
Push(L, 1) 1XXX2 ! 1XXX1
Push(R, 1) XX1X2 ! XX1X1

The definition of MPs based on the changes in the surgical context could
enable the translation of context and MPs to existing gesture labels and facili-
tate aggregation of di↵erent datasets labeled with di↵erent gesture definitions.
However, translation from context and MP labels to existing gesture definitions
is complicated. This is because executional and procedural errors in gestures as
defined by [13] can e↵ect the MP sequences for each gesture. Additional mod-
eling is needed to develop and evaluate the MP to gesture translation which
is beyond the scope of this paper.
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Fig. 3 App for Context Labeling based on Video Data

2.2 Labeling of Context and Motion Primitives

2.2.1 Context Labeling

Gesture recognition models using supervised learning require a large number
of annotated video sequences [27]. However, manual labeling of gestures is
subjective and can lead to labeling errors [32]. Thus, we developed a tool for
manually annotating surgical context (states of objects and instruments) based
on video data.

Labeling video data for surgical context provides a more objective way of
recognizing gestures and can lead to higher agreement among annotators. As
noted in [15], labels for surgical workflow require guidance from surgeons while
annotations for surgical instruments do not. Since context labels document
objects held by or in contact with the left and right tools, they rely less on
surgical knowledge than gestures which require anticipating the next activities
in a task to mark when a gesture has ended. Figure 3 shows a snapshot of the
tool for manually labeling context based on video data. Annotators indicate
the value of di↵erent state variables for frames in the video data and may
copy over values until a change in context is observed. This di↵ers from other
labeling methods where annotators mark the start and end of each segment
and assign it a label.

2.2.2 Context to Motion Primitive Translation

Context to MP translation allows us to leverage high quality context labels
for creating surgical workflow annotations and aggregating di↵erent surgical
datasets. Context labels are translated automatically into MPs using the FSMs
for each task.

For each change of context in a sequence of context labels, the sequence
of MP labels are generated by identifying specific state variable changes that
correspond to the transitions in Tables 1 and 2 and are visualized in the FSMs.
If multiple states change between labeled frames, then Grasp and Release MPs



COMPASS 9

Frame Context
⁞

1380 05202
1400 00202
1500 20202
1510 20002
1560 20000
1770 20200
⁞

Start Stop Motion Primitive
⁞

1380 1399 Untouch(L, Ring)
1400 1499 Grasp(L, Needle)
1500 1509 Release(R, Needle)
1510 1559 Pull(L, Needle)
1560 1769 Grasp(R, Needle)
⁞

Fig. 4 Example sequence of context translated into motion primitives

have a higher priority than Touch and Untouch MPs (if they are performed
on the same object by the same tool). Otherwise, all MPs are listed in the MP
transcript so that separate MP transcripts for the left and right sides could be
generated. Figure 4 shows an example of a sequence of context translated into
MPs. This rule-based translation method assumes that changes in context can
be completely described by the definitions in Tables 1 and 2. Alternatively,
data-driven and learning from demonstration approaches can be used for more
realistic and personalized modeling of the tasks and label translations.

2.3 COMPASS Dataset

We create the COMPASS dataset by aggregating data from 39 trials of S,
28 trials of NP, and 36 trials of KT performed by eight subjects from the
JIGSAWS dataset; 47 trials of PT performed by eight subjects from the DESK
dataset; and 65 trials of PaS, and 71 trials of PoaP performed by 12 subjects
from the ROSMA dataset (see Figure 5). Thus, COMPASS contains a total
of 286 trials by 28 di↵erent subjects which is about three times the number of
trials and subjects in JIGSAWS.

Tables 3, 4, and 5 list the numbers of MPs and gestures of each type in
each task and dataset. By using standardized definitions, COMPASS has fewer
classes and more examples than other datasets.

Videos are at 30 fps for the stereoscopic JIGSAWS and DESK tasks and 15
fps for the single camera ROSMA tasks. The kinematic data have been down-
sampled to 30 Hz and contain position, velocity, orientation (in quaternions),
and gripper angle variables. Since linear velocity data was not available for all
tasks, it was derived from the position data using a rolling average over five
samples. ROSMA did not contain gripper angle, so a separate round of man-
ually labeling video data was performed to approximate the gripper angle as
open or closed.

To ensure reliable and high quality annotations, three full sets of context
labels were obtained using our context labeling tool for all the trials. Two of the
authors, with extensive experience with the datasets and the dry-lab robotic
surgery tasks, each produced a full set of labels for all trials. The third set
of labels was crowd-sourced to 22 engineering students, who had no previous
experience but were given a training module on the definitions of context, MPs,
and their relationship, and how to use the labeling tool. The “Consensus”
labels were then created using majority voting for each state variable.
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COMPASS includes these consensus context labels at 3 Hz and the auto-
matically generated MP labels interpolated to 30 Hz for both arms of the
robot so that every kinematic sample has an MP label. The original gesture
label files from JIGSAWS and DESK are renamed and included to promote
comparisons between data and label sets. The dataset is organized into di↵er-
ent tasks with directories for the kinematic and video data, and each type of
label. The subject and trial numbers from the original datasets are retained
so that the LOSO and LOUO setups from [1] can be extended to COMPASS.

(a) Suturing (S)

(b) Needle Passing (NP)

(c) Knot Tying (KT)

(d) Pea on a Peg (PoaP)

(e) Post and Sleeve (PaS)

(f) Peg Transfer (PT)

Fig. 5 Tasks included in the COMPASS dataset: S, NP, and KT from JIG-
SAWS [6]; PoaP and PaS from ROSMA [29]; and PT from DESK [20]
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Table 3 Number of Motion Primitives (MPs) in each task and the COMPASS
dataset: Suturing (S), Needle Passing (NP), and Knot Tying (KT) from JIG-
SAWS [6]; Peg Transfer (PT) from DESK [20]; and Pea on a Peg (PoaP) and
Post and Sleeve (PaS) from ROSMA [29].

JIGSAWS DESK ROSMA

MP S NP KT PT PoaP PaS COMPASS

Grasp 471 373 283 323 577 824 2851
Release 441 365 247 313 556 776 2698
Touch 518 330 135 539 1782 1598 4902

Untouch 314 206 111 364 1261 1131 3387
Pull 194 114 235 0 525 0 1068
Push 179 119 0 0 2 0 300

Table 4 Number of gestures in each JIGSAWS task and dataset.

Gesture Suturing Needle Passing Knot Tying JIGSAWS

G1 29 30 19 78
G2 166 117 0 283
G3 164 111 0 275
G4 119 83 0 202
G5 37 31 0 68
G6 163 112 0 275
G8 48 28 0 76
G9 24 1 0 25
G10 4 1 0 5
G11 39 25 36 100
G12 0 0 70 70
G13 0 0 75 75
G14 0 0 98 98
G15 0 0 73 73

3 Evaluation

To evaluate our framework, we obtain MP graphs (similar to grammar graphs
but with nodes representing MPs) from two expert robotic surgeons describing
the execution of S, NP, and KT and compare our proposed models to expert
knowledge. To evaluate our context labeling and context to MP translation
methods, we obtain two more sets of labels, in addition to the “Consensus” set.
Two trios of independent annotators labeled subsets of trials in the JIGSAWS
and DESK tasks, respectively, for context, MPs, and gestures to assess and
compare the di↵erent labeling methods and the context to MP translation. We
refer to these labels as the “Multi-level” set and their gesture labels could be
compared to the gesture labels from JIGSAWS and DESK. The surgeons also
labeled a set of six trials (one from each task to capture task-diversity, and
overlapping the trials in the “Multi-level” set) for context, referred to as the
“Surgeon” set, against which we evaluate label quality.
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Table 5 Number of gestures in DESK for Peg Transfer performed on the da
Vinci surgical robot.

Gesture Peg Transfer

S1 146
S2 147
S3 137
S4 146
S5 146
S6 135
S7 135

3.1 Task Modeling

We evaluate our framework by comparing the MP graphs for S, NP, and KT
to MP graphs defined by expert surgeons using graph edit score. Surgeons
may not be available to verify future models, so it is important to check that
those for surgically-relevant tasks represent expert knowledge. In order to com-
pare the FSMs with the MP graphs defined by expert surgeons, the sequence
of MP transitions from the FSMs were converted to MP graphs. Touch and
Untouch MPs that immediately preceded or followed Grasp and Release MPs,
respectively, were removed since the surgeons assumed that combination when
creating their MP graphs. Figure 2a corresponds to Figure 6b with additional
tasks in the Online Resource.

Graph Edit Score (GES) is the normalized graph edit distance (GED)
calculated using Equation 2 by dividing the minimum cost of transforming A
to B by the maximum GED (cost of deleting all nodes and edges in A and
inserting all nodes and edges in B where C represents an empty graph). GED
is implemented using networkx [9] with the Start nodes as the root and a
timeout of 18 hours.

GES = (1� GED(A,B)

(GED(A,C) +GED(B,C))
)⇥ 100 (2)

GES was lowest for S in Table 6 because it was the most complex task
and the surgeons had additional MPs to represent passing the needle from left
to right while the proposed model represented that as the inverse of passing
the needle from right to left. Although physically possible, several transitions
in our proposed graph for S were not in the surgeons’ graph since they may
not represent an e�cient execution of the task. Comparatively, KT was a
simpler task, and overall the proposed models are good representations of
expert knowledge.

3.2 Context Labeling

We assess context label quality by measuring the agreement among annota-
tors in the “Consensus” set and the agreement between the “Surgeon” and
“Consensus” sets of context labels using Krippendor↵’s Alpha [27]. Then, we
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Fig. 6 Surgeon-defined (a) and proposed (b) MP graph models for the Needle
Passing task

Table 6 Graph edit scores between the proposed and surgeon-defined MP
graphs.

Task Graph Edit Score

Suturing 76.4
Needle Passing 83.6
Knot Tying 93.3

compare context, MP, and gesture level labeling methods using labels in the
“Multi-level” set.

Krippendor↵ ’s Alpha (↵) is a commonly used statistical measure of
inter-rater reliability. It indicates how much the data from two or more
methods can be trusted to represent the real phenomenon [16].

Krippendor↵’s Alpha is calculated using Equation 3 by considering the
probability De that two labelers produced the same annotation due to chance
rather than agreement on the data to label, and the observed disagreement
Do between each labeler’s annotations:

↵ = 1� Do

De
(3)
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↵ takes a value between -1 and 1, with ↵ > 0.8 indicating near-perfect
agreement, a value between 0.6 and 0.8 indicating substantial agreement,
and smaller values indicating less agreement (Table 7). ↵ = 0 indicates no
agreement other than by chance and negative values reflect more pronounced
disagreement.

Table 7 Interpretation of Krippendor↵’s Alpha (↵) from [12].

Range Interpretation

↵ > 0.8 Near-perfect
0.6 < ↵  0.8 Substantial
0.4 < ↵  0.6 Moderate
0.2 < ↵  0.4 Fair

↵  0.2 Slight

Each of the labelers annotated a sequence of states encoded as numbers
representing categorical data, so the nominal distance or di↵erence function
is best suited to quantify agreement between labelers. The nominal distance
or di↵erence function in Equation 4 is used to calculate De and Do [12] in
Equation 5, where nl is the number of labelers and nu is the total number of
frames which two or more labelers annotated.

dnominal(label1 label2) =

(
0 if label1 = label2
1 if label1 6= label2

(4)

Do =
1

2nunl(nl � 1)

X

l1,l22all labels

dnom(l1, l2)

De =
1

2nunl(nunl � 1)

X

l1,l22all labels

dnom(l1, l2)
(5)

3.2.1 Consensus Context Labels

Table 8 shows near-perfect agreement among annotators in four tasks and sub-
stantial agreement in labeling two tasks. The average for all tasks was 0.84,
weighted for the number of frames for each task, indicating near-perfect agree-
ment in context labeling overall. Long segments of near-perfect agreement are
punctuated by disagreements at the transitions between context. However,
disagreement is limited to a few context states instead of the gesture label
for a specific frame which results in much greater agreement between annota-
tors when labeling for context than gestures. This shows that our method for
labeling context results in a high quality set of fine-grained labels.

Between the Consensus and Surgeon context labels, all tasks had an ↵ of
at least 0.8. The average ↵ for all tasks (weighted for the number of frames for
each task) was 0.92, indicating near-perfect agreement between crowd-sourced
context labels and those given by surgeons.
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Table 8 Krippendor↵’s Alpha among annotators and between Consensus and
Surgeon context labels.

Task Among
annotators

Between Consensus
and Surgeon

S 0.69 0.86
NP 0.85 0.90
KT 0.79 0.94
PT 0.90 0.94
PoaP 0.83 0.93
PaS 0.89 0.97

3.2.2 Multi-level Labels

Table 9 shows the least agreement among annotators using descriptive gesture
definitions. Directly labeling MPs is also di�cult, likely due to their short dura-
tions. But context annotations have the greatest agreement because labels are
based on well-defined interactions among surgical tools and objects observed
in video data.

There is also much higher agreement when labeling for context than for
gestures and the existing JIGSAWS labels are di�cult to reproduce (smallest
↵ in last column). This might be because JIGSAWS labels were generated
more subjectively by only one annotator by watching the videos and consulting
with a surgeon [6]. We again see that crowd-sourcing context labels results
in high quality annotations comparable to those from surgeons and are thus
representative of expert knowledge.

3.3 Context to Motion Primitive Translation

To assess the performance of the context to MP translation, we translate the
context labels in the “Multi-level” annotations set and compare the resulting
translated MP transcripts to the ground truth MP labels for each annotator
using accuracy and edit score.

Accuracy: Given the sequence of predicted labels, P , and the sequence of
ground truth labels, G, the accuracy is the ratio of correctly classified samples
divided by the total number of samples in a trial.

Edit Score: We report the edit score as the normalized Levenshtein edit
distance, edit(G,P ), by calculating the number of insertions, deletions, and

Table 9 Krippendor↵’s Alpha among annotators for Multi-level labels.

Multi-Level Multi-Level vs.
Surgeon Context

Multi-Level vs.
JIGSAWS/DESK
GesturesTask Context MPs Gestures

S 0.72 0.33 0.24 0.86 0.34
NP 0.91 0.41 0.08 0.90 0.04
KT 0.89 0.26 0.20 0.89 0.06

PT 0.89 0.72 0.72 0.89 0.62
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replacements needed to transform P to match G [18]. The edit score is nor-
malized by the maximum length of P and G, as shown in Equation 6, where
100 is the best and 0 is the worst.

Edit Score = (1� edit(G,P )

max(len(G), len(P ))
)⇥ 100 (6)

3.3.1 Quality of Multi-level Labels

The context labels and the ground truth MP labels show variability with task
and annotator skill, both of which can a↵ect the resulting translated MP labels
and their evaluation. We first assessed the quality of each annotator based
on their agreement with the “Surgeon” context labels and JIGSAWS/DESK
gesture labels with respect to the label for each frame and the overall label
sequence. Table 10 shows ↵, and Table 11 shows accuracies and edit scores for
each annotator when labeling for context (compared to Surgeons) and gestures
(compared to JIGSAWS/DESK). For JIGSAWS, annotator 3 was the most
reliable annotator overall with annotator 2 almost as reliable for context labels.
Less variation was seen among the annotators for DESK.

Table 10 Krippendor↵’s Alpha of Multi-level labels compared to Surgeon
context and JIGSAWS/DESK gesture labels.

Context Gestures

Task Annotator 1 Annotator 2 Annotator 3 Annotator 1 Annotator 2 Annotator 3

S 0.87 0.89 0.91 0.06 0.05 0.76
NP 0.88 0.88 0.85 0.09 0.07 0.47
KT 0.72 0.85 0.87 0.08 0.39 0.48

PT 0.93 0.89 0.93 0.40 0.41 0.45

Table 11 Accuracy and edit score of Multi-level labels compared to Surgeon
context and JIGSAWS/DESK gesture labels.

Context Gestures

Annotator 1 Annotator 2 Annotator 3 Annotator 1 Annotator 2 Annotator 3

Task Acc Edit Acc Edit Acc Edit Acc Edit Acc Edit Acc Edit

S 67.6 69.2 72.3 73.0 77.3 78.0 25.5 49.1 26.1 42.0 85.6 88.7
NP 74.1 74.9 76.0 76.6 74.7 74.9 34.0 56.8 27.7 49.5 47.3 54.5
KT 32.5 32.5 60.7 60.7 62.2 62.2 24.0 51.5 52.3 61.0 62.5 64.1

PT 83.3 84.1 83.7 87.2 83.7 84.0 49.8 52.7 50.6 52.3 54.1 55.8

3.3.2 Translation Accuracy

Table 12 shows the context to MP translation accuracy was higher for anno-
tators 1 and 3 for JIGSAWS, and annotators 2 and 3 for DESK. There is
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inter-rater variability across tasks, where KT and PT generally had higher
metrics while S had lower metrics likely due to task complexity. However, the
ground truth MP labels used in this evaluation had very low agreement among
annotators compared to context labels (Table 9) and assessing their reliabil-
ity is beyond the scope of this paper. Future work will use multi-level labeling
methods to better evaluate and improve this translation.

Table 12 Accuracy and edit score between ground truth and translated MPs
for Multi-level and Surgeon labels.

Annotator 1 Annotator 2 Annotator 3 Surgeon

Task Acc Edit Acc Edit Acc Edit Acc Edit

S 27.4 27.9 19.0 26.9 23.7 30.1 28.6 30.8
NP 64.9 67.4 27.2 45.1 45.2 46.4 21.5 25.4
KT 50.5 53.8 31.9 56.1 53.6 56.8 48.6 50.3

PT 29.2 30.7 49.5 50.7 50.6 56.8

4 Discussion and Conclusion

We present a framework for modeling dry-lab surgical tasks as finite state
machines where MPs cause changes in surgical context, characterized by tool
and object/tissue interactions. We apply our framework to three publicly avail-
able datasets to create an aggregate dataset of kinematic and video data along
with context and MP labels. Our method for labeling context achieves substan-
tial to near-perfect agreement among annotators and expert surgeons. Using
MPs, we aggregate data from di↵erent datasets, tasks, and subjects and nearly
triple the amount of data with consistent label definitions.

Future work includes extending the MP framework to tasks from real
surgical procedures by defining task-specific state variables to augment the
context labels and their associated MPs (e.g., “Cut” for scissors like in [26]).
Our framework enables the generalized modeling and comparison of surgi-
cal activities between datasets and tasks. This supports the development of
datasets and models for surgical automation [8] by providing examples of
fine-grained motions, and multi-granularity models for improved fine-grained
activity recognition [11].
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Dénes Ákos Nagy, Hirenkumar Nakawala, Juliane Neumann, Thomas
Neumuth, Javier Rojas Balderrama, Stefanie Speidel, Martin Wagner,
and Pierre Jannin. Toward a standard ontology of surgical process mod-
els. International journal of computer assisted radiology and surgery,
13(9):1397–1408, 2018.

[8] Michele Ginesi, Daniele Meli, Andrea Roberti, Nicola Sansonetto, and
Paolo Fiorini. Autonomous task planning and situation awareness
in robotic surgery. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3144–3150. IEEE, 2020.

[9] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using networkx. Technical report, Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[10] Danying Hu, Yuanzheng Gong, Blake Hannaford, and Eric J Seibel. Semi-
autonomous simulated brain tumor ablation with ravenii surgical robot
using behavior tree. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 3868–3875. IEEE, 2015.
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Related Work

The “Language of Surgery” project [13] models surgical procedures as a lan-
guage and uses grammar to dictate how gestures are combined to perform
tasks. A hierarchical framework has been proposed to model surgical proce-
dures [17]. Available datasets primarily focus on the task, gesture, and action
levels as summarized in Table 1 and Table 2. Within this hierarchical frame-
work, tasks consist of a sequence of gestures, and actions are defined below
the gesture level.

Surgical gestures: Gestures are defined as “the smallest surgical motion
gesture that encapsulates a specific intent, (e.g., insert needle through tissue)”
with semantic meaning. The JIGSAWS dataset [6], provides gesture level labels

1
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Table 1 Datasets and definitions for gesture recognition

Paper Dataset Tasks Gestures

Gao 2014 [6] [1] JIGSAWS
• Video
• Kinematics

Suturing
Needle Passing
Knot Tying

G1 - Reaching for needle with right hand
G2 - Positioning needle
G3 - Pushing needle through tissue
G4 - Transferring needle from left to right
G5 - Moving to center with needle in grip
G6 - Pulling suture with left hand
G7 - Pulling suture with right hand
G8 - Orienting needle
G9 - Using right hand to help tighten suture
G10 - Loosening more suture
G11 - Dropping suture at end and moving to end points
G12 - Reaching for needle with left hand
G13 - Making C loop around right hand
G14 - Reaching for suture with right hand
G15 - Pulling suture with both hands

DiPietro 2019 [4] MISTIC-SL
• Video
• Kinematics

Suturing
Needle Passing
Knot Tying

G1-G12 & G14
G13 - Grab suture using 2nd needle driver
G15 - Rotate suture twice using 1st needle driver around 2nd needle
driver
G16 - Grab suture tail using 2nd needle driver in knot tying
G17 - Pull suture tail using 2nd needle driver through knot
G18 - Pull ends of suture taut
G19 - Rotate suture once using 2nd needle driver around 1st needle
driver
G20 - Grab suture tail using 1st needle driver in knot tying
G21 - Pull suture tail using 1st needle driver through knot
G22 - Grab suture using 1st needle driver

Gonzalez 2020 [8] DESK
• Video
• Kinematics

Peg Transfer S1 - Approach peg S5 - Transfer peg - Exchange
S2 - Align & grasp S6 - Approach pole
S3 - Lift peg S7 - Align & place
S4 - Transfer peg - Get together

Menegozzo 2019
[16]

V-RASTED
• Video
• Kinematics

Pick and Place 1 – Collecting ring 4 – Failing 1
2 – Passing ring R to L 5 – Failing 2
3 – Posing ring on pole 6 – Failing 3

Goldbraikh 2022
[7]

own (open)
• Video
• Kinematics

Suturing
(not robotic)

No gesture Instrument tie
Needle passing Lay the knot
Pull the suture Cut the suture

Qin 2020 [22] RIOUS
• Kinematics
• Video
• Events

Ultrasonic prob-
ing

S1 Probe released, out of view S5 Lifting probe up
S2 Probe released, in view S6 Carrying probe to tissue surface
S3 Reaching for probe S7 Sweeping
S4 Grasping probe S8 Releasing probe

for the Suturing, Needle Passing, and Knot Tying tasks in a dry lab experi-
ment setting. Recent works have introduced new datasets as shown in Table
1, but di↵ering gesture definitions limit comparisons between them as well as
their generalizability to other tasks. Specifically, [4], [16], and [7] all performed
gesture recognition based on kinematic data, but used di↵erent datasets and
gesture definitions making comparisons di�cult. [21] fused kinematic, video,
and event data to recognize and predict gestures. But previous works have not
combined data from multiple sets since the gesture labels were incompatible.

Action triplets: Action triplets, <surgical tool /instrument, action verb,
target anatomy>, are used to describe tool-tissue interactions (TTI) in sur-
gical process modeling [19]. One of the early works formalizes Laparoscopic
Adreanectomies, Cholecystectomies and Pancreatic Resections [10] with sur-
gical activities in the form of action triplets for surgical phase inference. [28]
annotates two robotic surgery datasets of MICCAI robotic scene segmenta-
tion and Transoral Robotic Surgery (TORS) in the form of action triplets to
generate surgical reports. In the SARAS Endoscopic Surgeon Action Detec-
tion (ESAD) challenge [23], instead of action triplets, actions are described by
both the verb and the anatomy. In the CholecTriplet2021 benchmark challenge
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Table 2 Datasets and models for surgical actions

Paper Dataset Tasks Actions

Nwoye 2022 [20] CholecT50
• Video

Laparoscopic
cholecystectomy

Aspirate Dissect Pack
Clip Grasp Retract
Coagulate Irrigate
Cut Null

Li 2022 [12] EndoVis2018
• Video

Nephrectomy Cauterization Looping Clipping
Suction Idle Retraction
Staple Tool manipulation
Ultrasound sensing Suturing

Meli 2021 [15] own (dVRK)
• Video
• Kinematics

Ring Transfer Move
Grasp
Release
Extract

Forestier 2012 [5] own (open)
• Video

Lumbar disk
herniation

Right: Left:
Sew Hold
Install Install
Hold Remove
Remove
Coagulate
Swab
Irrigate

Wagner 2021 [26] EndoVis 2019
• Video

Laparoscopic
cholecystectomy

Grasp
Hold
Cut
Clip

De Rossi 2021 [3] own (dV and
SARAS)
• Video

Pick and place
(semi-
autonomous and
cooperative)

A01 – MS moves to ring
A02 – MS picks ring
A03 – MS moves ring to exchange area
A04 – AS moves to ring
A05 – AS grasps ring and MS leaves ring
A06 – AS moves ring to delivery area
A07 – AS drops ring on target
A08 – AS moves to starting position

Valderrama 2022
[25]

PSI-AVA
• Video

Radical prostate-
ctomy

Cauterize Open Still
Close Open Something Suction
Close Something Pull Travel
Cut Push Wash
Grasp Release
Hold Staple

Ma 2021 [14] own (dV)
• Video

Renal hilum
dissection
(Partial nephrec-
tomy)

Single blunt dissection: Single sharp dissection: Combination:
Spread Cold cut Pedicalize
Peel/push Hot cut 2-hand spread
Hook Burn dissect Coagulate then cut

Huaulmè 2021 [9] MISAW
• Kinematic
• Video

Suturing
Knot Tying

Catch Loosen completely Pass through
Give slack Loosen partially Position
Hold Make a loop Pull
Insert

for surgical action triplet recognition [18], the challenge dataset, CholecT50,
consists of 50 video recordings of laparoscopic cholecystectomy labeled for 100
action triplet classes composed from 6 instruments, 10 verbs, and 15 targets.
Despite being more descriptive of the surgical scene, the number of action
triplets in the form of verbs, instruments, and targets can grow exponentially
compared to a more limited number of gestures.

Surgical Actions: Surgical actions are generally referred to as the level
of the surgical hierarchy below gestures. Motions, motion primitives, and the
action verb in action triplets are surgical actions. In surgical process modeling,
[17] and [11] define motions as an activity performed by only one hand and
without semantic meaning. Many other works define actions as atomic units
as listed in Table 2.

The gesture and action label datasets are mostly proposed for surgical
workflow segmentation [2, 24–27], and gesture [4, 7, 16, 21], action, or action
triplet recognition [12, 20, 26]. However, di↵erent datasets have varying def-
initions of gestures and actions. This makes combining data from multiple
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sets challenging. Besides varying definitions, prior datasets on surgical actions
mainly contain video data, and none of the prior datasets look into the pro-
cess of labeling and labeling agreement. Prior datasets also do not di↵erentiate
actions performed by the left and right hands, which are important for detailed
skill assessment and analysis of bimanual coordination. In our framework, we
formally define motion primitives for the left and right hands. Our motion
primitives are sets of action definitions that are generalizable across di↵erent
datasets. We also look into how motion primitives relate to surgical context and
task progress. Our proposed dataset contains both kinematic and video data
along with context and motion primitives labels for a total of six dry-lab tasks.
Our dataset will facilitate the development of recognition, skill assessment,
and error detection models using both vision and kinematic data.

Context and Motion Primitive Models of Tasks

The ideal performance of each task is modeled using context and MPs as
a finite state machine (FSM) where the states are specific contexts and the
transitions between states are MPs. The FSM models for the tasks are shown
in Figures 1, 2, 3, 4, and 5.

Motion Primitive Graphs of Tasks

The Suturing, Needle Passing, and Knot Tying tasks were also modeled as MP
graphs and compared to surgeon-defined MP graphs as shown in Figures 6, 7,
and 8.
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Béjar, David D Yuh, Chi Chiung Grace Chen, René Vidal, Sanjeev
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