
Code Optimization for Enhancing SystemC Simulation Time

Homa Alemzadeh, Soheil Aminzadeh, Reihaneh Saberi, Zainalabedin Navabi

CAD Research Laboratory, Department of Electrical and Computer Engineering

School of Engineering, University of Tehran

{homa, soheil, saberi, navabi}@cad.ece.ut.ac.ir

Abstract

The main contribution of this paper is suggesting a

number of techniques to enhance SystemC simulation

time. Simulation speed is very important, especially at

the early stages of the system design. On the one hand,

these techniques guide SystemC developers, and on the

other, they can be used in automatic code translators.

The experimental results show a significant

improvement in the simulation time of SystemC codes.

1. Introduction

With the increasing complexity of digital systems,

and the reduced time to market, Electronic System

Level (ESL) design is regarded as the main design

methodology for implementing large digital systems.

Most of the new complex designs have software

parts as well as hardware modules. This implies the

necessity of developing hardware and software of a

system in parallel, which helps designers with

hardware/software co-design, co-verification, and co-

simulation.

The heart of the ESL design methodology is a

high-level language that is used for specification of

both software parts and hardware elements of a

complete system. SystemC is one of the most popular

System Level Design Languages (SLDL) which is

actually a C++ class library with certain characteristics

for hardware description. The major facilities of

SystemC are implementing main hardware-oriented

parameters, close correspondence with RT-Level

descriptions, and its high-level interface with C++ [1].

Regarding SystemC as the future choice for

modeling hardware in ESL design, there is a need for

translating previously designed modules from

traditional HDLs into SystemC. A reliable automatic

converter makes time-to-market shorter by skipping

this time-consuming manual transformation and

avoiding errors that frequently happen in this process

by filling the gap in between [2].

In this paper we present a number of optimization

techniques for describing hardware with SystemC

which aim at maximizing the efficiency of system

design by improving the simulation time. These

techniques can be mainly used in the process of

automatic conversion from VHDL to SystemC

descriptions. In particular we explore a number of

possible alternatives for converting VHDL constructs

to SystemC and evaluate the simulation time of the

design in case of each conversion. We also take

advantage of the most popular techniques proposed for

C/C++ code optimization in our conversions. The

experimental results show a significant enhancement in

simulation speed of SystemC codes. The most related

work on the conversion of Verilog HDL to SystemC is

[2]. In [3] some guidelines for optimizing the

conversion of Verilog HDL constructs to SystemC are

introduced and [4] proposes techniques for optimizing

SystemC performance. To the best of our knowledge,

this work is the first attempt for optimized VHDL into

SystemC conversion with considering HDL constructs

as well as the C/C++ code optimization techniques.

The rest of this paper is organized as follows,

Section 2 describes the importance of efficient VHDL

to SystemC conversion. Section 3 introduces some

guidelines for optimized conversion of VHDL

constructs to SystemC. Section 4 lists a number of

common C/C++ code optimization techniques which

are used in our conversions. A number of experimental

results are presented in section 5, and finally last

section concludes the paper.

2. VHDL to SystemC Conversion

In recent years time-to-market constraint has led

designers to use pre-designed and pre-verified

intellectual properties in new projects. Soft and firm

IP-cores are mostly available as traditional HDL

978-1-4244-9556-6/10/$26.00 ©2010 IEEE

descriptions such as Verilog and VHDL. Also many

designers prefer to develop their new designs in

conventional HDLs with which they are most familiar

and use the common reliable simulation and synthesis

tools developed based on these languages. On the other

hand, the need for co-design, co-simulation, and co-

verification of hardware and software in new complex

system designs, makes translating these HDL codes to

languages such as SystemC inevitable.

In order to have an effective system design, an

efficient simulation model for precise and high-speed

system exploration is needed. Faster simulation speed

enables design analysis and system partitioning in the

earlier steps of design and finally lead to manufacturing

more efficient systems. We have applied proposed

techniques to VSC converter of UT SystemC Studio

[5], an environment for RT level language translation,

simulation, and synthesis. VSC and TVS converters of

SystemC Studio automatically translate between

VHDL/Verilog synthesizable codes and RT level

SystemC.

3. SystemC Optimizations

In this section we investigate some of the most

important constructs of VHDL hardware description

language and their alternative equivalent structures in

SystemC. By evaluating and comparing the simulation

time in each case we find which conversions lead to the

best simulation time.

3.1. Conditional Statements

Conditional statements in VHDL can be converted

to switch-case, if-else or conditional signal assignment

in SystemC. Our experiments show that the SystemC

conditional signal assignments have a better simulation

time than SystemC switch-case statements, and switch-

case statements simulate faster than if-else statements.

The results depict that all of these SystemC constructs

have a better simulation time that their equivalent if and

case statement in VHDL.

3.2. Component Instantiation

There are two methods for hierarchical module

instantiation [6]. The first one is constructor

initialization list and second one is using pointer and

dynamic memory allocation. As in VHDL and Verilog,

in each case two alternative ways for binding the ports

are possible: Binding by name and Binding by position,

therefore there are four types of component

instantiations, which we refer to them as Method 1.a

and Method 1.b, Method 2.a and Method 2.b

respectively.

Our experimental results show that using pointers

and dynamic memory allocation is better than

initializing using constructor initialization list.

3.3. SC_METHODs instead of SC_THREADs

There are three kinds of processes in SystemC:

SC_METHOD, SC_THREAD and SC_CTHREAD.

SC_METHOD processes in SystemC implement

function-wise concurrency while SC_THREAD

processes implement true threading.

SC_THREAD with its own individual thread stack

and local variables is slower than SC_METHOD.

Usage of threads slows down the simulation

performance in most cases due to context switching

overheads. On the other hand supporting wait statement

is the advantage of SC_THREAD. Therefore as long as

there is no delay or dynamic event needs,

SC_METHOD is the best choice that makes a

significant enhancement in simulation time [4].

The most important usage of wait statement is in

test bench generation. On the other hand efficient test

bench simulation is highly valuable. This part

introduces a novel approach for using SC_METHODs

instead of SC_THREADs in test benches. The proposed

methodology is simple and straightforward. We adapt

the method presented in [4] and use event sensitivity

list for test bench SC_METHOD and replace all “wait

(Δt, unit-of-time)” statements with “next_trigger(Δt,

unit-of-time)”, notifying the proper event in zero time.

Test vector values are saved in a number of arrays.

Each SC_METHOD can access the contents of these

arrays through static integer indexes. This approach can

be applied for generation of different kinds of signal

values, such as arbitrary single values in random time

intervals, random value in specific time intervals, and

periodic repeated patterns. Figure 1 shows a general

test bench which is implemented by a simple

SC_THREAD and generates two series of arbitrary and

periodic values for signal a.

a = (sc_lv<4>)(“1010”);

wait(20,SC_NS);

a = (sc_lv<4>)(“0110”);

wait(11,SC_NS);

for (int i = 0; i < 100; i++)

{

a = (sc_lv<4>)(“0010”);

wait(14,SC_NS);

a = (sc_lv<4>)(“0111”);

wait(8,SC_NS);

}

Figure 1 – A SC_THREAD Testbench (Partial)

Arbitrary

Value

Periodic

Repeated

Value

Figure 2 shows application of our methodology to

code of Figure 1. The SC_THREAD of Figure 1 is

converted to an SC_METHOD which is sensitive to

event e1. Two global arrays A_LUT and T_LUT are

declared and initialized for saving the value and time of

test vectors to be applied to variable a. Indexes i, t,

pIndex, and k are declared as static. These indexes are

used to controlling the flow of applying test vectors to

variable a in each call of SC_METHOD after notifying

e1.
static int pIndex = 1;

static int i = 0;

static int t = 0;

static int k = 0;

if (pIndex <= 2) {

a = A_LUT[i];

next_trigger(T_LUT[t], SC_NS);

i++;

t++;

pIndex++;

e1.notify(SC_ZERO_TIME)

}

else if (pIndex <= 102){

 switch (k) {

case 0:

 a = (sc_lv<4>)(“0010”);

 k = 1;

 next_trigger(14, SC_NS);

 e1.notify(SC_ZERO_NS);

 break;

case 1:

 a = (sc_lv<4>) (“0111”);

 k = 0;

 pIndex++;

 next_trigger(8, SC_NS);

 e1.notify(SC_ZERO_NS);

 break;

}

}

Figure 2 - Equivalent SC_THREAD Testbench

The results of automatic generation of

SC_METHOD test benches for different types of values

can be used in an automatic test bench generation tool.

4. C/C++ Code Optimizations

In this part, we concentrate on different C/C++

code optimizations which using them cause a program

to run faster. These techniques mostly include manual

optimizations in C/C++ codes, which usually are not

handled by compilers. We mainly use the optimization

techniques presented in [7-9] and some other online

documents in this area. This section lists a number of

these techniques.

Function call is causes of one of the most

inefficiency in simulation time. Therefore full or partial

function inlining can improve simulator speed. Partial

inlining means, inlining of simple conditions which

may cause the immediate return in the case of function

call [9]. Local variables are more efficient than global

one. C/C++ professional developers proposed to use

local variables, declare them in the innermost scope,

and initialize them as soon as possible. They also

advised avoiding type casting by selecting the best type

of variables [7, 8]. Loop unrolling [8], using simpler

termination conditions in loops, and breaking nested

conditional chains in binary fashion are other useful

guidelines for C/C++ development techniques.

5. Experimental Results

We applied optimization techniques explored in

the previous sections to some VHDL benchmarks and

their equivalent SystemC codes. The results of

applying C/C++ optimization techniques are shown in

Table 1, and the simulation results for applying VHDL

to SystemC construct optimizations are depicted in

Table 2.

C/C++ optimization Improvement

Percentage

Function Inlining 17.7%

Data Type Optimization 4.9%

Loop Unrolling 1.3%

Switch instead of if 29.5%

Break Binary Fashion 13.3%

Simplifying Termination Condition 4.5%

Table 1- Simulation Performance Improvement by

Applying C/C++ Optimization Techniques

We also apply all of these techniques to an

industrial VHDL design. Our benchmark was the

VHDL description of SAYEH Processor [10]. The

SystemC optimization methods and C/C++

optimization techniques were applied to VSC converter

of UT SystemC Studio [5]. We automatically converted

VHDL code of SAYEH to its SystemC version by VSC

and evaluated the simulation time with and without

optimizations. In order to see the real effect of the

optimizations, we wrote a sort program in SAYEH

assembly language and ran it on this processor. This

program reads ten numbers from memory, shuffled

them, sorts them and writes them back into memory for

a number of times. Since in this program most of the

SAYEH instructions are used, most of the processes in

the code will be used and the processor will be busy

running them, thus, we can see the effect of our

optimizations better.

The simulation speed of SystemC description of

SAYEH processor will improve about 8% by replacing

SC_THREADs with SC_METHODs. We also compare

the simulation speed of SAYEH arithmetic unit with

Arbitrary

Value

Periodic

Repeated

Value

both four-value logic and two-value logic. The results

show that simulation time is improved about 2.5% by

applying this technique. We calculated the simulation

time for the initial SystemC code and the optimized

version of it after applying most of above

optimizations. As expected, our optimization

techniques resulted in a better simulation time and we

gained about 7% improvement in the simulation speed.

6. Conclusions

Because of the complexity of today’s designs, it is

important that the designers have a unified environment

for developing and simulating an entire system.

SystemC provides this environment. In this paper we

proposed a number of techniques to improve the

simulation speed of converted SystemC codes from

VHDL. We considered different conversions for main

VHDL constructs and also used the famous C++ code

optimizations in the conversions. The results of this

paper are applied to VSC converter of UT SystemC

Studio to automatically generate efficient SystemC

codes. Although some of these techniques lead to

expansion of code, and applying some of them lead to

generating a non-readable SystemC codes, but in

automatic code translation, the advantages of

considering these techniques is more than their

disadvantages.

7. References

[1] S. Mirkhani, Z.Navabi, System Level Design

Languages, The VLSI Handbook, Chapter 86, CRC

Press, 2nd Edition, Dec. 2006.

[2] L. Mahmoudi Ayough, A. Haj Abutalebi, O. F.

Nadjarbashi and S. Hessabi, "Verilog2SC: A

Methodology for Converting Verilog HDL to

SystemC," Proc. of the 11th International HDL

Conference (HDL Con 2002), pp. 211-217, San Jose,

California, USA, March 2002.

[3] L. Mahmoud Ayough, A. Haj Abutalebi, O. F.

Nadjarbashi and S. Hessabi, “Reusing Verilog IP Cores

in SystemC Environment by V2SC”, Ascend Design

Automation, San Jose, USA. [Online Document],

Available On: http://www.us.design-

euse.com/articles/article12918.html

[4] K.P.CHAMATH AYATILLEKE, “Optimizing

SystemC performance”, M.S. thesis, Institute for

System Level Integration, Livingston, Scotland, UK,

2002.

[5] A. M. Gharehbaghi, R. Saberi, H. Alemzadeh and Z.

Navabi, “SystemC Studio: Translation for TLM

Combined Simulation and Synthesis” Tool, University

Booth of University of Tehran, 11th Design,

Automation and Test in Europe Conference

(DATE’08), Munich, Germany, March 2008.

[6] D. C. Black, J. Donovan, SystemC: From the

Ground Up, Kluwer Academic Publishers, 2004.
[7] Writing Efficient C and C++ Code Optimization,

Koushik Ghosh, [Online Document], Available on:

http://www.codeproject.com/cpp/C___Code_Optimizat

ion.asp “Optimizing C and C++ Code”, [Online

Document], Available on:

http://www.eventhelix.com/RealtimeMantra/Basics/Opt

imizingCAndCPPCode.htm

[8] C++ Optimization Strategies and Techniques, Pete

Isensee, [Online Document], Available on:

http://www.tantalon.com/pete/cppopt/main.htm.

[9] Advanced Compiler Optimization Techniques, Wind

River, [Online Document], Available on:

http://www.techonline.com/community/related_content

/20437?print.

[10] Z. Navabi, Verilog Digital System Design, 2nd Edition,

McGraw-Hill Press, 2006.

SYSTEMC OPTIMIZATION

TECHNIQUE

PERCENTAGE OF IMPROVEMENT

(NORMALIZE VERSUS VHDL OR WORST CASE SYSTEMC)

Conditional Assignment
If-else Switch-case

Conditional

Signal Assignment
-

83.1 33. 8.31 -

Component Instantiation
Model_1.a Model_1.b Model_2.a Model_2.b

8.3. 8333 .3363 .632

SC_THREAD versus

SC_METHOD

SC_THREAD SC_METHOD - -

1 8.08 - -

4-value-logic versus

2-value-logic

4-value-logic

(SC_THREAD)

4-value-logic

(SC_METHOD)

2-value-logic

(SC_THREAD)

2-value-logic

(SC_METHOD)

1 4.6 2.59 5.1

Multiple Processes versus

Single-Process

Multiple Processes Single Process - -

22.9 19.4 - -

Table 2 - Simulation Speed Improvement by SystemC Optimization Techniques

