
Real-Time Context-aware Detection of
Unsafe Events in Robot-Assisted Surgery

Mohammad Samin Yasar, Homa Alemzadeh

Abstract— Cyber-physical systems for robotic surgery have
enabled minimally invasive procedures with increased precision
and shorter hospitalization. However, with increasing complex-
ity and connectivity of software and major involvement of
human operators in the supervision of surgical robots, there
remain significant challenges in ensuring patient safety. This
paper presents a safety monitoring system that, given the
knowledge of the surgical task being performed by the surgeon,
can detect safety-critical events in real-time. Our approach
integrates a surgical gesture classifier that infers the operational
context from the time-series kinematics data of the robot with
a library of erroneous gesture classifiers that given a surgical
gesture can detect unsafe events. Our experiments using data
from two surgical platforms show that the proposed system can
detect unsafe events caused by accidental or malicious faults
within an average reaction time window of 1,693 milliseconds
and F1 score of 0.88 and human errors within an average
reaction time window of 57 milliseconds and F1 score of 0.76.

I. INTRODUCTION

Robot-assisted surgery (RAS) is now a standard procedure
across various surgical specialties, including gynecology,
urology and general surgeries. During the last two decades,
over 2 million procedures were performed using the Intuitive
Surgical’s daVinci robot in the U.S. [1]. Surgical robots are
complex human-in-the-loop Cyber-Physical Systems (CPS)
that enable 3D visualization of surgical field and more
precise manipulation of surgical instruments such as scissors,
graspers, and electro-cautery inside patient’s body. The cur-
rent generation of surgical robots are not fully autonomous
yet. They are in level 0 of autonomy [2], following the
commands provided by the surgeons from a master-side tele-
operation console in real-time (Figure 1a), translating them
into precise movements of robotic arms and instruments,
while scaling surgeon’s motions and filtering out hand-
tremors. By increasing flexibility and precision, surgical
robots have enabled new types of surgical procedures and
have reduced complication rates and procedure times.

Recent studies have shown that safety in robotic surgery
may be compromised by vulnerabilities of the surgical robots
to accidental or maliciously-crafted faults in the cyber or
physical layers of the control system or human errors [3],
[4]. Examples of system faults include disruptions of the
communication between the surgeon console and the robot,
causing packet drops or delays in tele-operation [5], acciden-
tal or malicious faults targeting the robot control software [6],

*This work was partially supported by a grant from the U.S. National
Science Foundation (Award No. 1748737).

*Authors are with the Department of Electrical and Computer Engi-
neering (ECE), University of Virginia, Charlottesville, VA 22904, USA
{msy9an, ha4d}@virginia.edu.

or faulty sensors and actuators [3] (Figure 1b). Those faults
can propagate and manifest as system errors (e.g., unintended
movements, modification of surgeon’s intent, and unrespon-
sive robotic system [7]) or cause human errors (e.g., multiple
attempts to suture or end-effector going out of sight [8]–[10])
during surgery and eventually lead to safety-critical events
that negatively impact patients and caregivers. Examples
include causing unexpected cuts, bleeding, or minor injuries
or resulting in long procedure times and other complications
during the procedure or afterwards [3]. Table I provides
examples of common types of human errors during a sample
set of surgical tasks, as reported in the literature.

Our goal is to improve the safety of surgery by enhancing
the robot controller with capabilities for real-time detection
of early signs of adverse events and preventing them by
issuing timely warnings or taking mitigation actions. Previ-
ous works on safety and security monitoring and anomaly
detection in surgical robots and other CPS have mainly
focused on incorporating the information from the cyber
and/or physical layers for modeling and inference of the
system context [11] and distinguishing between safe and
unsafe control commands that could potentially lead to safety
hazards. For example, [6] proposed an anomaly detection
framework for detection of targeted attacks on the robot
control system through modeling robot physical state and
dynamics. They showed that considering the physical context
(e.g., next motor position and velocities to be executed on the
robot) leads to improved detection of unsafe events compared
to fixed safety checks on just the cyber state variables (e.g.,
torque commands calculated in control software). However,
with the major involvement of the human operators in real-
time control and operation of semi-autonomous CPS such
as surgical robots, another important contributing factor to
safety is the operational context that captures human opera-
tors’ preferences, intent, and workflow. In this work, we aim
to improve the detection coverage for unsafe events during
surgery by considering a more complete view of system
context that incorporates the knowledge of the surgical
workflow, characterized by the surgical tasks or gestures
being performed by the surgeon.

This paper presents an online safety monitoring system for
robot-assisted surgery that takes the human operator actions
(surgeon’s commands at the tele-operation console) as input
to infer the operational context (current surgical subtask
or gesture) and performs context-specific validation of the
kinematics state of the robot to detect erroneous gestures that
could potentially lead to safety-critical events. The proposed
system can be integrated with the existing surgical robots

Surgeon Console Surgical Robot

Dry lab setup - Block Transfer task

(a)

Human Surgeon

Master
Console

Control
Software

Control
Hardware

Robotic Arms and Instruments

Operational context
• Surgical Workflow

- Surgical task, subtask

Cyber context
• Control system state

- Robot position, orientation

Physical context
• Physical robot state

- Motor encoder values

(b)

G2 G12 G6 G5 G11

(c)
Fig. 1: (a) Tele-operated surgical robot, adopted from [12], [13], (b) Typical control structure and system context in robotic surgery, (c)
Operational context characterized by surgical gestures in a sample trajectory of Block Transfer task

and simulators to provide real-time feedback to surgeons and
potentially improve the learning curves in simulation training
and prevent adverse events in actual surgery. In summary, the
main contributions of the paper are as follows:
• Demonstrating that across a surgical task, the errors are

context-specific, i.e., dependent on the current surgical
gesture being performed by the surgeon (Section II).
This suggests the possibility of designing a context-
aware monitoring system that can detect gesture-specific
errors and can be pervasively applied to any surgical
task that is composed of such atomic gestures.

• Developing a safety monitoring system, consisting of
a surgical gesture classifier and a library of gesture-
specific classifiers that can detect the erroneous gestures
in real-time (Section III). Our proposed system can
detect errors caused by accidental faults or attacks
targeting the software, network or hardware layer or
human errors that affect the kinematic state of the robot.

• Introducing a simulation environment based on ROS
[14] and Gazebo [15] and the Raven II [12] control
software (an open-source surgical robot from Applied
Dexterity Inc.), that enables the experimental evalua-
tion of safety monitoring solutions for robotic surgery
(Section IV-B). Our simulator can model physical inter-
actions between the robot and its environment, generate
synthetic surgical trajectory data, and simulate realistic
robot failure modes using software fault injection with-
out harming the physical robot.

• Evaluating our monitoring system in terms of accuracy
and timeliness in detecting errors using data from two
different surgical platforms, Raven II and daVinci Re-
search Kit [16] (dVRK from Intuitive Surgical Inc.). Our
results in Section V provide evidence for our hypothesis
that a context-aware safety monitor can enable more
accurate detection of anomalies. The proposed monitor
can detect potential adverse events for the surgical tasks
of Block Transfer and Suturing with average F1 scores
of 0.88 and 0.76 within average reaction time windows
of 1,693 and 57 milliseconds, respectively.

II. PRELIMINARIES

Our goal is to enhance the surgical robots with capabilities
for real-time detection of errors and providing just-in-time

feedback to surgeons or taking automated mitigation actions
before safety-critical events occur. Our safety monitoring
solution is built upon the main concepts described next.

Operational Context in Surgery: The diverse sources of
faults and involvement of humans in the control of surgical
robots make real-time detection of adverse events particularly
challenging and require understanding of the surgical context
in order to decide on the best safety actions to take.

Previous work [19] has defined context in surgical proce-
dures as a hierarchy, starting from the surgical procedure that
is being executed, to the steps in the procedure, to surgical
tasks, subtasks or gestures, and finally the specific motions of
the robot (see Figure 2). Within a specific procedure (e.g.,
Radical Prostatectomy) for a surgical task (e.g., suturing),
the change in operational context happens in the temporal
domain as a result of the change of the surgeon’s gestures or
the position and orientation of the surgical instruments end-
effectors, leading to the corresponding change in the subtask
(e.g., pull suture through). Other contributing factors to the
change in the operational context in surgery are the state of
the robot software, the type of surgical instrument used, and
the anatomical structures and their interactions within the
surgical workspace. The operational context can be either
observed directly using video data or inferred from the
corresponding kinematics data and other state information
from the robot.

One common approach to modeling of surgical tasks is us-
ing finite-state Markov chains with each state corresponding
to an atomic surgical gesture [21]. In our work, we consider
tasks from the Fundamentals of Laparoscopic Surgery (FLS)
[22], in particular, Suturing and Block Transfer, which are
commonly observed in both simulation training and actual
surgery. Figure 3a shows the Markov chain representation
of the task of Suturing, which we derived from the analysis
of the dry-lab demonstrations in the JIGSAWS dataset [23].

Surgical Task Faults Errors Adverse Events
Laparoscopic Wrong orientation Liver laceration Hematoma [17]

Cholecystectomy of end-effector with bleeding
Laparoscopic Too much force Peroration of Subhepatic [17]

Cholecystectomy with grasper gallbladder wall abcess
Anastomosis Wrong Cartesian Needle Punctures [18]

Position overshoots goal Vessel

TABLE I: Common Errors in Surgery

2

Radical
Prostatectomy

Urethrovesical
Anastomosis

Suture

Pull suture
through

Reach and orient

Granularity Hierarchy

Surgical
Procedure

Steps in the
procedure

Tasks in the
procedure

Sub-tasks

Motion

Example

5

4

3

2

1

Fig. 2: Hierarchies in Surgical Procedures (adopted from [20])

The gestures in Suturing are represented as G1 to G11,
excluding G7, as described in Table II. It is apparent that
different demonstrations of Suturing could follow different
sequences of gestures due to variations in surgeons’ styles
and common errors in performing the tasks. Figure 1c
shows a sample trajectory for the surgical task of Block
Transfer, consisting of G2, G5, G6, G11 and G12 gestures.
As this is a comparatively simple task, all demonstrations
in our collected dataset have the same sequence as seen by
the Markov chain in Figure 3b, making the probability of
transitioning between different states 1.

Prior works on surgical skill evaluation [24] and safety
monitoring [19] have shown that efficiency and safety of
surgical tasks are context-specific and that certain gestures or
sub-tasks are better indicators of surgeon’s skills and surgical
outcomes [25]–[27]. We incorporate this concept into our
system and provide evidence of improved results if we use
the notion of gestures when detecting unsafe events.

Current surgical robots and simulators use surgeon’s com-
mands and robot trajectories, collected from surgical pro-
cedures or virtual training experiments, for offline analysis
of subtasks and objective evaluation of surgeon’s perfor-
mance [21], [24], [28]–[30]. In this work, we show that there
is potential for the online analysis of this data during surgery
to prevent the occurrence of safety-critical events.

Erroneous Surgical Gestures: Given the knowledge of
surgical gestures, the goal of the safety monitor is to detect
erroneous gestures performed on the surgical robot that could
indicate the early signs of unsafe events. As there are many
variables involved each time a surgical task is performed,
starting from the idiosyncrasies of the surgeon (preferences,
efficiency, and expertise) to the dynamics of underlying
cyber-physical system of the robot, it is safe to assume that
there will be many variations of the same surgical gesture.
However, it is imperative to identify erroneous gestures
that could potentially lead to adverse events or delay in
the task. The identification of erroneous gestures as the
atomic building blocks of surgical procedures could enable
preemptive detection of unsafe events in any surgical task.

We extend the well-established definition of surgical ges-
tures by identifying the common errors that are observed
when performing each gesture, using a rubric adopted from
[31]. Table II shows the set of gestures and common errors

Start

G1

0.74

G5

0.21

G8

0.05

End

G4

0.03

0.97

G2

G3

0.96

0.01

G6

0.02

0.01

0.01

0.93

0.05

G11

0.01

0.89

0.01

0.02

0.04

G9

0.02

G10

0.03

0.22

0.03

0.76 0.02

0.62

0.01 0.130.01

0.21

0.92

0.08

0.08

0.67

0.08

0.17

0.50

0.50

1.00

(a) Suturing

Start

G2

1.00

End

G12

1.00

G5

G11

1.00

G6

1.00

1.00

1.00

(b) Block
Transfer

Fig. 3: Markov chain derived for the surgical task of Suturing and
Block Transfer

in the tasks of Suturing and Block Transfer. Similar rubrics
can be derived for other tasks by identifying their atomic
gestures and gesture-specific errors, as shown in [8]–[10],
[19], [32]. We classify a gesture as erroneous if any of the
common errors specific to that gesture are observed. Not all
erroneous gestures will lead to adverse events. Depending on
the gesture, the type of error, and other contextual factors,
the erroneous gestures can vary in terms of severity but in
this work we do not consider this for detecting them.

We also show the types of faults in the kinematic state
variables that can potentially cause such errors. We assume
that accidental or malicious faults in software, hardware or

Gesture Description Common Gesture Specific Errors Potential
Index (Failure Modes) Causes (Faults)
G1 Reaching for nee-

dle with right hand
More than one at-
tempt to reach

Wrong rotation
angles

G2 Positioning needle More than one at-
tempt to position

Wrong rotation
angles

G3 Pushing needle
through the tissue

Driving with more
than one move-
ment

Not removing
the needle
along its curve

Wrong
Cartesian
Position

G4 Transferring nee-
dle from left to
right

Unintentional Nee-
dle Drop

Needle held on
needle holder
not in view at
all time

Wrong
Cartesian Po-
sition/Sudden
jumps

G5 Moving to center
with needle in grip

Unintentional Nee-
dle Drop

High Grasper
Angle

G6 Pulling suture with
left hand

Needle held on
needle holder not
in view at all times

Unintentional
Needle Drop

Wrong
Cartesian Po-
sition/Sudden
jumps

G8 Orienting needle Uses tissue/ instru-
ment for stability

More than one
attempt at ori-
enting

Wrong rotation
angles

G9 Using right hand
to help tighten su-
ture

Knot left loose Low pressure
applied to
tighten suture

G10 Loosening more
suture

G11 Dropping suture
and moving to end
points

Failure to dropoff Low Grasper
Angle

G12 Reaching for nee-
dle with left hand

More than one at-
tempt to reach

Wrong
Cartesian Po-
sition/Sudden
jumps

TABLE II: Gesture specific errors in Suturing and Block Transfer
tasks (adopted from [23], [31])

3

G1

G2

.

.

.

.

G11

Safe

Unsafe

Surgical Gesture
Classifier Erroneous Gesture

Classifiers

Selected
Classifier

Online Context-Aware Anomaly Detection

Safe

Rubric

Kinematics
Time-Series Data

Video Frames

Data Annotation

Unsafe

Gesture Index
G1

G2

G3

Description
Reaching for the needle
with right hand
Positioning the tip of
the needle
Pushing needle through
the tissue

Common Errors
Unintentional Needle
Drop
More than once attempt
at posit ioning
Driv ing with one
movement

Surgical Task
Library

Alerts to
Surgeon

Offline Contextual Learning
Surgical Context:

Gesture Classification
Erroneous

Gesture Detection

Fig. 4: Pipeline for Real-time Context-aware Safety Monitoring
System.

network layer, or human errors can manifest as errors in
the kinematics state variables and lead to such erroneous
gestures. We demonstrate that this is possible through fault
injection experiments on the RAVEN II surgical robot using
simulated trajectory data for the task of Block Transfer
in Section IV-B and through analysis of the pre-collected
trajectory data from dry-lab demonstrations of Suturing on
the Intuitive Surgical’s daVinci Research Kit in Section IV-A.

III. CONTEXT AWARE SAFETY MONITORING

Our context-aware monitoring system is composed of
two supervised learning components, 1) A surgical gesture
classifier followed by a library of 2) Erroneous gesture
classifiers. For both parts of our pipeline, we use variants of
Deep Neural Networks (DNNs) [33], which have achieved
state-of-the-art performance in many pattern-recognition and
data mining problems. We model the detection task as a
hierarchical time-series classification problem. The first part
of our pipeline is trained to identify the current operational
context or gesture. This then activates the second part of
the pipeline, which classifies the gesture as safe or unsafe
by learning from gesture-specific spatio-temporal patterns
in time-series kinematics data. We train the two parts of
the pipeline separately from each other. Figure 4 shows
our end-to-end pipeline for training and evaluation of the
safety monitoring system1. The proposed monitor can be
integrated with the surgical robot by being deployed on a
trusted computing base at the last computational stage in the
robot control system pipeline [6] and be used in conjunction
with other mechanisms proposed in previous works (see
Section VII) to secure the robot against faults and attacks.

Analysis of Erroneous Gesture Distributions: To better
understand the characteristics of different erroneous gestures,
we performed an analysis of their underlying distributions
based on the kinematics data collected from the task of
Suturing in the JIGSAWS database. Previous work [19],
[34] have modeled the surgical trajectories as a multi-modal
Gaussian distribution, with kinematics data being sampled
from one of the many Gaussian mixtures and each mixture

1Code available at: https://github.com/UVA-DSA/ContextMonitor

Fig. 5: Pairwise divergence between erroneous gesture distributions

corresponding to a different gesture. We used this insight to
estimate the probability density function of each erroneous
gesture class using Gaussian kernels. We then calculated
the relative entropy between the respective distributions of
different erroneous gesture classes (EGi) using the Jensen-
Shannon Divergence (JS-divergence) metric [35] which pro-
vides us with a measure of difference between each pair of
distributions as calculated in Equation 1:

JSD(EGi||EGj) =
1

2
D(EGi||M) +

1

2
D(EGj ||M)

where, M =
1

2
(EGi + EGj) and

EGi,j = ErroneousGestures

(1)

Figure 5 shows the pairwise JS-divergence between dis-
tributions of different erroneous gestures. We see that there
is in particular a high divergence between the distributions
of gesture classes G2, G3, G4 and G6, all of which are
commonly occurring gestures and have a large number of
samples in the task of Suturing (see Table VII). For the other
gesture classes we were not able to compute meaningful
distributions due to small sample sizes. This observation
partly supports our hypothesis that errors in surgery are
context-specific and the knowledge of gestures might help
with improved error detection. We use this observation in
designing our Erroneous Gesture Detection component of the
pipeline by developing a library of classifiers, each trained
for detecting errors in a specific gesture class.

Gesture Segmentation and Classification: We model the
task of identifying and segmenting surgical gestures as a
multi-class classification problem (Equation 2). The input
signal xt represents the time-series of kinematics variables
with a sliding time-window of w and a stride of s. The output
Gt represents the gesture corresponding to that time-series
and is a one-hot vector of all gestures from 0 to 14.

xt = (xt, xt+1, .., xt+w)
Gt = (0, 0, 1, .., 0)T

(2)

As the input signal is a multivariate time-series, we use
Recurrent Neural Networks (RNN) which are known to learn
spatial and temporal patterns. For our gesture classification,
we use LSTM [36] networks which are known to learn long
and short-term dependencies, and have the ability to decide
what part of the previous output to keep or discard. A typical
LSTM unit is composed of a memory cell and three gates:
input, output and the forget gate. The gates regulate the flow
of information inside the unit and allow LSTM architectures
to remember information for long periods of time while also
filtering information that is less relevant.

4

To aid our gesture classification and ensure smooth tran-
sition boundaries, we use stacked LSTM layers to provide
greater abstraction of the input sequence and to allow the
hidden states at each level to operate at a different timescale
[37]. This is followed by a fully-connected layer with ReLU
[38] activation and a final softmax layer for obtaining gesture
probabilities. The loss function is the categorical cross-
entropy, with the model trained using the Adam [39] opti-
mizer. To address over-fitting, we use dropout regularization
and early stopping on a held-out validation set. To improve
the learning process, we use batch normalization layers and
adaptive learning rate with step-decay.

Erroneous Gesture Detection: Having identified the cur-
rent gesture, Gt, the next stage of the pipeline classifies the
gesture as erroneous or non-erroneous using the kinematics
samples as input. We train this part of the pipeline separately
from the gesture classification component and only combine
the two parts in the evaluation phase, with the erroneous
gesture detection following the gesture segmentation and
classification (see Section V-B).

xt = (xt, xt+1, .., xt+w)
yt = p(EGt|Gt, xt)

(3)

We frame the problem as detection of a context-specific
conditional event, i.e., a part of the trajectory can be erro-
neous or non-erroneous, depending on the current gesture, as
shown in Equation 3. The input is the predicted gesture and
a kinematics sample corresponding to that gesture, and the
output is a binary classification of the kinematics sample to
safe or unsafe. If any sample within a gesture is erroneous,
we label that whole gesture as unsafe. Although our model is
trained on sliding time-window samples instead of the whole
gesture, it learns to have smooth output over time, allowing
it to distinguish between entire boundaries of erroneous or
non-erroneous gestures.

As a baseline, we trained a single classifier, with no ex-
plicit notion of context, for detecting the erroneous gestures.
In this case, the problem reduces to a non-conditional binary
classification of the time-series data, with the input being
the kinematics sample and the output being whether it is
erroneous or not. Similar to gesture classification, our models
for detecting erroneous gestures are trained using the Adam
optimizer with step-decay and early stopping. We used low
initial learning rates ranging from 0.0001 to 0.001 to help
the stability of the optimization, given a small dataset.

IV. EXPERIMENTS

We evaluated our monitoring system using trajectory data
collected from the common surgical tasks of Block Transfer
and Suturing performed in dry-lab settings on two different
surgical platforms, the open-source Raven II surgical robot
and the daVinci Research Kit (dVRK). The Raven II allowed
us to simulate the impact of technical faults and attacks using
software fault injection, while the surgical data collected
from dVRK enabled studying the effect of human errors and
evaluating the safety monitor using realistic surgical tasks.

All experiments were conducted on an x86 64 PC with an
Intel Core i7 CPU @ 3.60GHz and 32GB RAM, running
Linux Ubuntu 18.04 LTS, and an Nvidia 2080 Ti GPU,
running CUDA 10.1. We used Keras [40] API v.2.2.4 on
top of TensorFlow [41] v.1.14.0 for training our models and
Scikit-learn [42] v.0.21.3 for pre-processing and evaluation.

A. daVinci Research Kit (dVRK)

JIGSAWS Dataset: For evaluating the performance of
our solution on the dVRK, we considered the surgical task
of Suturing. Since we did not have full access to the system,
we used pre-collected trajectory data from the JIGSAWS
dataset [23] and manually annotated the errors. The dataset
contains synchronized kinematics and video data recorded
at 30 Hz from three surgical tasks (Suturing, Knot-tying
and Needle-passing) that were performed by surgeons with
varying skill levels in dry-lab settings on the dVRK platform.
The kinematics data comprises of 19 variables for each
robot manipulator, including: Cartesian Position (3), Rotation
Matrix (9), Grasper Angle (1), Linear (3) and Angular
Velocity (3). We used the data from 39 demonstrations of the
task of Suturing with the Leave-One-SuperTrial-Out (LOSO)
setup of the JIGSAWS dataset for training and evaluating our
monitoring pipeline. The LOSO setup meant that we trained
on 4 super trials and held one super trial out for evaluation.

Erroneous Gesture Annotation: The gestures were al-
ready labeled as part of the JIGSAWS dataset [23], but
we further classified them as safe or unsafe. We did so by
manually annotating video data based on the rubric in Table
II and used it as ground truth for evaluating our classifiers
which rely only on kinematics data. We labeled any given
gesture as unsafe if any of the common errors specific to that
gesture were observed in its corresponding video segment.
Out of a total of 793 gestures, 144 were labeled as erroneous.

B. Raven II

ROS Gazebo Simulator: For the Raven II, our experi-
ments were conducted using a simulator that we developed
based on ROS Gazebo 3D virtual environment, integrated
with the RAVEN II control software and a fault injection
tool that mimics the effect of technical faults and attacks in
the robot control system. This simulator is available to the
research community for experimental evaluation of safety
monitoring solutions in robotic surgery2.

We leveraged the physics engine of the Gazebo simulator
for faithful representation of the dry-lab settings. Figures 6a
and 6b show the dry-lab setup of the Block Transfer task in
the Raven II workspace along with the corresponding simula-
tion in the Gazebo 3D environment. All our experiments used
the same setup with the left and right robot manipulators,
grasper instruments, and the standard objects in the Block
Transfer task, including a block and a receptacle where the
block should be dropped.

The input to the simulator can be surgeon’s commands
during tele-operation or output from motion planning al-
gorithms in autonomous mode. The kinematics data from

2https://github.com/UVA-DSA/raven2 sim/tree/gazebo sim

5

(a) Block Transfer in dry lab setting (b) Block Transfer in ROS Gazebo

𝛿𝑥𝛿y
𝛿z

(c) Cartesian Position Faults

𝜽

(d) Grasper Angle Faults

Fig. 6: Experimental setup for dry lab and virtual simulation of surgical tasks

the simulator consisted of 277 features (including the 19
variables available from the JIGSAWS dataset), sampled at
1000 frames per second. The simulator also allows logging of
the video data using a virtual camera. The video frames are
logged at 30 frames per second, along with their timestamps
to enable synchronization with kinematics data and to mea-
sure the times when faults and errors happen. We collected
20 fault-free demonstrations of the Block Transfer task
performed by 2 different human subjects in the simulator,
on which we carried out our fault injections. The dataset
collected from the simulation experiments consisted of 115
fault-free and faulty demonstrations.

Fault Injections: We assume that accidental or malicious
attacks and human errors can manifest as errors in the kine-
matic state variables in the inputs, outputs and the internal
state of the robot control software and cause the common
error types shown in Table II. As a result, our software
fault injection tool directly perturbs the values of kinematic
state variables to simulate such errors. Each injected fault
is characterized by the name of the state variable (V) with
value (S) that is targeted, along with the injected value (S′)
and the duration of the injection (D).

Figure 1c shows how the operational context for the Block
Transfer task changes with respect to the kinematic state
variables (V), which are the Grasper Angle and the Cartesian
Position of the robot instrument end-effectors. The fault du-
ration, D, is measured in milliseconds and could span across
more than one gesture. We perturbed the values of Grasper
Angle and the Cartesian Positions (x, y, z) in the collected
fault-free trajectories and sent the faulty trajectory packets
to the robot control software. This allowed us to repeat the
same trajectory or to perturb only specific segments while
the rest of the trajectory remained the same.

To simulate the effect of attacks or human errors, we
created deviations from the actual trajectory by slight incre-
ments or decrements in the values of Grasper Angle and the
Cartesian Position variables. For Grasper Angle, we added a
constant value of θ for the duration (D) until the target value
(S′) was reached (see Figure 6d). For Cartesian Position,
we provided a target deviation (δ = d(S′, S)), which is the
Euclidean distance between S and S′ and a function of x, y
and z values. We then enforced a uniform positive deviation
in the three dimensions of x, y, and z by injecting the value
of δx,y,z = δ/ 2

√
3 to the three variables over the duration

(D) (see Figure 6c).
Table III shows the results of our fault injection experi-

ments on the Gazebo simulator. In total, we conducted 651

fault injections in the task of Block Transfer, out of which,
498 resulted in errors, including 392 block-drop and 106 for
dropoff failures. The state-space for injected values, S′, was
0.3 rad ≤S′≤ 1.6 rad for Grasper Angle and 3000 mm ≤S′≤
65000 mm for Cartesian Position. We explored different
combinations of perturbations of the targeted variables over
different durations of the trajectory.

The experiments showed that perturbing the Grasper Angle
had a greater effect on causing errors compared to perturbing
the Cartesian Position. For lower Grasper Angle values (0.3
rad ≤S’≤ 0.8 rad), perturbation over different durations of
the trajectory resulted in different failure modes. For fault
injections with duration 0.65 ≤D≤ 0.9 and targeted Grasper
Angle 0.3 rad ≤S′≤ 0.8 rad, the likelihood of a dropoff
failure was high (>90%) whereas for the same range (0.3 rad
≤S′≤ 0.8 rad) but different duration (0.55 ≤D≤ 0.7), the
likelihood of any failure was significantly low. There were
only 2 cases where the block was dropped at the wrong
position due to high Cartesian deviation. When injecting
higher values to the Grasper Angle (0.9 rad ≤S′≤ 1.6 rad),
we observed block-drops regardless of the duration of the
perturbation, with higher values of S′ leading to higher
percentage of failures. This suggests that for block-drop error
to happen, the value of the Grasper Angle either needs to be
higher than 0.8 rad, or the fault needs to be injected for a
longer duration of time. For dropoff failure to happen, the
Grasper Angle has to be below 1.0 rad, or the fault needs
to be injected for a longer duration, possibly beyond G11,
which is the gesture where the block should be dropped.

Fault Types (Values, Durations, and Total Number) # Errors (%)
Grasper Duration Cartesian Position Duration # Fault Block-drop Dropoff

Angle (rad) (% Trajectory) Deviation (mm) (% Trajectory) Injections Failure

0.30-0.40
0.55-0.70 3000-6000 0.50-0.60 16 0 (0%)

6000-65000 8 1 (12.50%)

0.65-0.90 3000-6000 0.70-0.90 16 16 (100%)
6000-65000 16 16 (100%)

0.50-0.60
0.55-0.70 3000-6000 0.50-0.60 16 0 (0%)

6000-65000 8 1 (12.50%)

0.65-0.90 3000-6000 0.70-0.90 16 16 (100%)
6000-65000 16 15 (93.75%)

0.70-0.80
0.55-0.70 3000-6000 0.50-0.60 16 0 (0%)

6000-65000 8 0 (0%)

0.65-0.90 3000-6000 0.70-0.90 16 15 (93.75%)
6000-65000 16 16 (100%)

0.90-1.00
0.55-0.70 3000-6000 0.50-0.60 58 28 (48.28%)

6000-65000 50 33 (66%)

0.65-0.90 3000-6000 0.70-0.90 16 5 (62.50%) 6 (75%)
6000-65000 16 6 (75%) 6 (75%)

1.10-1.20
0.55-0.70 3000-6000 0.50-0.60 47 46 (95.78%)

6000-65000 74 67 (86.49%)

0.65-0.90 3000-6000 0.70-0.90 16 12 (75.00%)
6000-65000 16 12 (75.00%)

1.30-1.40
0.55-0.70 3000-6000 0.50-0.60 41 40 (97.57%)

6000-65000 61 58 (95.08%)

0.65-0.90 3000-6000 0.70-0.90 16 14 (87.50%)
6000-65000 16 14 (87.50%)

1.50-1.60
0.55-0.70 3000-6000 0.50-0.60 7 6 (85.71%)

6000-65000 17 17 (100%)

0.65-0.90 3000-6000 0.70-0.90 16 16 (100%)
6000-65000 16 16 (100%)

Total Fault Injections 651 392 106

TABLE III: Fault injection experiments on the Raven II

6

Automated Labeling of Errors: We used computer vision
approaches as an orthogonal method of detecting errors,
as our fault injections were performed on the kinematics
state variables. This, along with the knowledge of when
a fault was injected, provided us the semantics to label a
particular gesture as erroneous or non-erroneous. We adopted
the marker-based (color and contour) detection approaches
used in [19] here. As the first step, we converted the logged
video data to a sequence of frames (Figure 7a) with their
corresponding timestamps. For the case of detecting Block-
drop, we used Structural Similarity Index (SSIM) [43] on
thresholded images (Figure 7b) of the block to find the exact
frame (and the timestamp) of when the failure happened. For
the case of detecting Drop-off failure, we applied the same
HSV threshold, followed by contour detection (Figure 7c) to
detect the contour of the block and track its centroid through-
out the trajectory. We collected the trace of the centroid
for the fault-free trajectories which we used as reference to
compare against faulty trajectories. We used Dynamic Time
Warping to compare the fault-free and faulty trajectory traces
and checked for large deviations that indicate when the block
should have been dropped, but it was not (Figure 7d).

Gesture Annotation: For annotating the data generated
using the Gazebo simulator, we extended the data structure
of the Raven II to include the current surgical gesture. This
allows the human operator to record the surgical gesture as
(s)he is simultaneously operating the robot, reducing the time
and effort to look at videos and performing the annotations.
For labeling the erroneous gestures, we recorded the time that
we injected the fault to one of the kinematics state variables
and the time that the fault led to any of the common errors in
Table II based on the video data and then mapped those times
to the corresponding gestures. As a result, we were able to
automate our gesture and erroneous gesture annotations for
all experiments conducted in the Gazebo simulator. A total
of 890 out of 4557 gestures were labeled as erroneous.

(a) Video Frames
(b) HSV Threshold of the
block

(c) Contour Detection
(d) Comparison between
traces, adopted from [19]

Fig. 7: Failure detection using contour segmentation and DTW

C. Metrics

We evaluated the individual components as well as the
entire pipeline of our safety monitoring system in terms
of accuracy and timeliness in identifying gestures and
detecting errors using the metrics that are described next.

Individual Components: We trained individual compo-
nents of the pipeline, namely the gesture classification and
the erroneous gesture detection, separately. For the first part
of the pipeline, our evaluation metrics were classification
accuracy, for assessing model performance across different
gesture classes, and jitter value, for identifying the timeliness
of the classification. Jitter is calculated as the difference
between the time our model detects a gesture and its actual
occurrence, with positive values indicating early detection.

Our evaluations of the second part of the pipeline were
based on the standard metrics used for binary classification:
True Positive Rate (TPR), True Negative Rate (TNR), Pos-
itive Predictive Value (PPV), and Negative Predictive Value
(NPV), and the Area Under the ROC Curve (AUC) of the
anomaly class. We reported the micro-averages for all the
metrics unless stated otherwise.

Overall Pipeline: For evaluating the classification perfor-
mance of the overall pipeline, we used the F1-score as well
as the AUC of the negative class. In our case, it is imperative
to not classify any erroneous gestures as non-erroneous (to
not miss any anomalies), while keeping the False Positive
Rate (FPR) low. The F1-score, which is the harmonic mean
of precision and recall, is a good indicator of how the model
performs in detecting or not missing erroneous gestures. At
the same time, it only reports the performance of the model
using one particular threshold. As F1-score is a point-based
metric, we also used AUC of ROC curves, which reports the
performance over different classification thresholds.

Our metrics for assessing the timeliness of error detection
were average computation time for the classifiers and reac-
tion time, defined as the time to react on the advent of an
erroneous gesture and calculated as the difference between
the actual time of error occurrence and the time it is detected:

reactiont = actualt − detectedt (4)
The reaction time can be used as a measure of the time

budget that we have for taking any corrective actions to pre-
vent potential safety-critical events. A positive value means
that our model can predict an error before its occurrence
(early detection) whereas a negative value indicates the
detection of error after it has already happened (detection
delay). As shown in Case 1 in Figure 8, our classifier predicts
every kinematics sample as erroneous or non-erroneous.
So there might be cases where different parts within the
same gesture are classified as erroneous or non-erroneous.
The reaction time is calculated based on the first time an
erroneous sample is detected within a gesture.

We also report the percentage of times that the erroneous
gestures were detected before their actual occurrence (%
Early Detection in Table VIII). To calculate this, we divided
the total number of times when the reaction time was positive
by the total number of erroneous gesture occurrences.

7

Timesteps (s)

G2 G12 G6 G5 G11Ground
Truth

G2 G12 G6 G5 G11Predicted
Case 1

0 10 20 30 40

Erroneous
Non-erroneous

Jitter Reaction Time

G2 G12 G6 G5 G11Predicted
Case 2

Fig. 8: Example Timeline for Detecting Anomalies

V. RESULTS

A. Performance of Pipeline Components

Gesture Segmentation and Classification: All our results
are averaged across the 5 trials of LOSO setup. Table IV
shows the accuracy of our best performing model for all the
tasks in the JIGSAWS dataset compared to two state-of-the-
art supervised learning models that only rely on kinematics
data, [44] and [45]. In addition, we also evaluated our model
for the Block Transfer task on the Raven II. Our best per-
forming model was a 2 layer stacked LSTM, with input time-
step of 1, comprising of 512 and 96 LSTM units respectively,
followed by a fully-connected layer with 64 units and a
final softmax layer. For the tasks in the JIGSAWS dataset,
the input to the model were all the 38 kinematics features
from the robot manipulators. For the Block Transfer task
on Raven II, we used the same LSTM architecture but the
input to our model was the Cartesian Positions and Grasper
Angles for each of the manipulators. [44] used a variation of
the Skip-Chain Conditional Random Fields (SC-CRF) that
can better capture transitions between gestures over longer
periods of frames. [45] introduced Shared Discriminative
Sparse Dictionary Learning (SDSDL) that aims to jointly
learn a common dictionary for all gestures in an unsupervised
manner together with the parameters of a multi-class linear
support vector machine (SVM). For Suturing, our gesture
classifier achieved competitive average accuracy of 84.49%
on the test data. For Block Transfer, which has more training
data and is a simpler task with no recurrence of gestures, our
model achieved an accuracy of 95.16%.

Table IX shows that for the Suturing task our model de-
tected the gestures within a jitter value of 337 ms, performing
best for G2, G3, G4, and G6 with over 80% accuracy and
worst for G10. Our model was unable to detect G10 which
is ”Loosening more suture” as it does not occur frequently
(see Fig. 3a), with only 1% of transition probability from G6
and 13% transition probability from G4. In addition, as seen
in Table II, there were no common errors in G10.

Erroneous Gesture Detection: We trained our erroneous
gesture detection system on individual gestures, assuming

Method Suturing Knot Tying Needle Passing Block Transfer
This work 84.49 % 81.69 % 69.34 % 95.16 %

SC-CRF [44] 85.24 % 80.64 % 77.47 % N/A
SDSDL [45] 86.32 % 82.54 % 74.88 % N/A
Training size 102,698 44,512 66,914 4,197,988

Number of Trajectories 39 28 36 115

TABLE IV: Gesture classification accuracy in LOSO setup

Setup Model Layers Features Lr a TPR TNR PPV NPV
gesture
specific

LSTM 512,128,
64,16*

All 1e-4 0.75 0.72 0.67 0.80

gesture
specific

LSTM 128,32,
16,16*

C,R,G 1e-4 0.76 0.72 0.67 0.81

gesture
specific

Conv 512,128,
32,16*

C,R,G 1e-4 0.76 0.73 0.68 0.80

gesture
specific

Conv 512,128,
32,16*

All 1e-4 0.76 0.73 0.69 0.80

non-
gesture
specific

LSTM 512,128,
64,16*

All 1e-4 0.73 0.71 0.66 0.77

TABLE V: Overall performance of the erroneous gesture classifi-
cation step for Suturing on the dVRK using different setups, for
input time-window=5, stride=1

a Initial Learning Rate, * Fully-Connected Layer

perfect gesture boundaries. This allowed us to independently
evaluate the performance of this module and evaluate differ-
ent architectures and models that are suited for time-series
classification, including LSTM networks and 1D CNNs.
We also experimented with different supervised learning
architectures, from kernel-based models such as SVM to
ensemble techniques such as Random Forest, but here only
report results for LSTM networks and 1D-CNNs for their
superior performance over other architectures. We further
experimented with different subsets of kinematics features,
while using the set of all the features as our baseline. Our
experiments specifically involved using different combina-
tions of Cartesian Position (C), Rotation matrix (R), Grasper
Angle (G) and Joint Angle (J) variables.

Tables V and VI show the best performing models for each
setup for Suturing and Block Transfer tasks, respectively.
We overall observed that being gesture specific led to better
accuracy (higher TPR, TNR, PPV, NPV), even with smaller
datasets and that 1D-CNNs performed better than LSTM
networks for binary classification of gestures for both the
tasks. Training the models using specific features (Cartesian,
Rotation and Grasper Angle) led to similar or better perfor-
mance compared to training with all the features. In both
cases, the best performing model had higher TPR and TNR
while achieving competitive NPV and PPV. This suggests
that the models can identify the unsafe gestures with good
accuracy while not providing too many false alerts.

Table VII shows the average AUCs achieved for each
gesture class using the best performing 1D-CNN model.
Our model performed best on gestures G6 and G4 for
Suturing. The common error for both was when the ”Robot
end-effector is out of sight”, which occurred frequently in
the demonstrations and often among surgeons with less

Setup Model Layers Features Lr a TPR TNR PPV NPV
gesture
specific

Conv 256,128,
64,16*

C,G 1e-4 0.62 0.87 0.65 0.86

gesture
specific

LSTM 64,32,
64,16*

C,G 1e-4 0.62 0.85 0.57 0.89

non-
gesture
specific

Conv 256,128,
64,16*

C,G 1e-4 0.59 0.85 0.58 0.85

TABLE VI: Overall performance of the erroneous gesture classi-
fication step for Block Transfer on the Raven II using different
setups, for input time-window=10, stride=1

a Initial Learning Rate, * Fully-Connected Layer

8

Gesture Train Size % Errors Test Size % Errors AUC
G1 1432 29 358 28 0.60
G2 13728 25 3432 24 0.50
G3 34921 41 8731 40 0.70
G4 13339 77 2601 79 0.93
G5 2717 5 680 4 0.61
G6 18923 74 4731 74 0.93
G8 8413 45 2104 29 0.81
G9 1769 59 443 56 0.61
G5 681976 24 151038 19 0.72
G6 394077 25 88748 21 0.75
G11 241067 53 53969 41 0.66

TABLE VII: Performance of the erroneous gesture classifiers

expertise. For Block Transfer, G6 had the highest accuracy,
although the common gesture-specific error in this case is
”Unintentional needle/object drop”. We also measured the
average reaction time for detecting erroneous gestures for
each gesture, as shown in Table IX. In our setup, the best
value would be 0, which is when the detection of erroneous
gesture coincides with the start of the gesture, due to the
design of our pipeline where we first detect the gesture
and then the gesture-specific anomaly, if any. Since we had
erroneous and non-erroneous gestures, we also calculated the
average jitter for erroneous gestures, to see their difference
when compared to the overall average jitter and their effect
on the reaction time. For Suturing, our model performed
best for gesture G4, with an average reaction time of -0.01
frames (- 0.34 ms), as well as competitive average jitter for
erroneous gestures of -84 ms, followed by G1 which had an
average reaction time of -6.0 frames (-167 ms). Gestures G10
and G11 had no common errors and hence no reaction times.
When looking across all gestures, we noticed our model
performed best for gestures which are commonly occurring
in the Suturing and Block Transfer tasks and also have higher
number of errors. Improvement over less common gestures,
with sparse errors will be the focus of future work.
B. Overall Performance of Safety Monitoring Pipeline

We evaluated the overall performance of our Safety Mon-
itoring pipeline for two different setups of gesture-specific
and non-gesture-specific. Although we used offline data for
our analysis, our system can perform the classification in
real-time.

Non-Context-Specific Safety Monitoring: As a baseline,
we trained a classifier with no explicit notion of context in
terms of training labels, by feeding it only the kinematics
data and the corresponding safe/unsafe labels. Due to the
the ability of LSTM networks to recognize varying spatio-
temporal patterns coupled with larger data sizes compared
to gesture-specific classifiers, the classifier demonstrated
some generalization and attained competitive performance
(see Table VIII). An average F1-score of 0.72 and AUC
of 0.71, reaction time of +6.62 frames or 221 ms, and
computation time of 1.9 ms was achieved for Suturing. For
Block Transfer, the classifier achieved an average F1-score
and AUC of 0.73 and 0.74, respectively. The reaction time
was -15.2 frames or -457 ms.

Context-Specific Safety Monitoring: In this setup, the
input kinematics samples were first passed to the gesture

classifier step. Having detected the gestures, their corre-
sponding kinematics samples were sent to a separate gesture-
specific classifier to identify their safety properties. As seen
in Table VIII, for Suturing the average F1-score and AUC
were 0.76 and 0.81, respectively, which is an improvement
over the results obtained with non-context-specific setup.
The average reaction time was -1.7 frames (-57 ms) and
average computation time was 2.1 ms. For Block Transfer,
the trend in accuracy is similar, with the gesture-specific
setup achieving a higher average F1-score of 0.88 versus 0.73
and a higher AUC of 0.86 versus 0.74. The higher accuracy,
as reflected by F1-score and AUC, provides more evidence
(in addition to distribution analysis in Section III) to support
our hypothesis about the context-specificity of errors.

The gesture-specific models had comparatively worse re-
action and computation times than the non-gesture specific
pipeline due to the latency introduced for identifying the
context before detecting gesture-specific anomalies. Figure
8 (Case 2) provides examples of how a negative jitter
associated with the detection of the gesture can result in
negative reaction times. However, for Block Transfer, we
were only late by -50.8 frames or 1693 ms and for Suturing,
by 220 ms, while having high accuracy.

Figure 9 compares the worst, best and median performance
of the context-specific and non-context-specific setups across
different demonstrations, with the context-specific pipeline
having an overall better performance. To get an empirical
upper bound for the overall performance of the pipeline,
we evaluated our entire pipeline assuming perfect gesture
boundaries. As shown in Table VIII, when using perfect
gesture boundaries, the average AUC improved from 0.81
to 0.83 and reaction time improved from -57 ms to 53 ms.

VI. DISCUSSION

Our results provide encouraging evidence for the possibil-
ity of accurate and timely detection and possible preemption
of erroneous gestures. Our experiments provided us with a
number of key insights:

Being context-specific results in more accurate de-
tection of erroneous gestures but worse reaction times.
Table (VIII) shows that there is an improvement of 14.1%
and 16.2% of AUC over non-context specific detection, for

Setup Avg.
AUC

Avg.
F1

Avg.
React
Time
(ms)

Early
Detection
(%)

Avg.
Compute
Time
(ms)

Gesture-specific with per-
fect gesture boundaries for
Suturing

0.83
±.14

0.79
±0.13

+53
±797

38.89 % N/A

Gesture-specific with
gesture classifier for
Suturing

0.81
±.14

0.76
±(0.13)

-57
±1030

43.75 % 2.1

Non-gesture-specific clas-
sifier for Suturing

0.71
±.16

0.72
±0.12

+221
±1047

34.53 % 1.9

Gesture-specific with
gesture classifier for
Block Transfer

0.86
±.15

0.88
±.14

-1693
±5670

28.26 % 3.2

Non-gesture-specific clas-
sifier for Block Transfer

0.74
±.18

0.73
±0.17

-457
±4520

38.78 % 1.5

TABLE VIII: Evaluation of the overall pipeline with ground-truth
vs. predicted gestures, compared to a non-gesture-specific approach

9

Gesture Perfect Boundaries Gesture Specific Pipeline
Reaction Time F1 score Average Jitter Gesture Detection Average Jitter for Reaction F1 score for

(ms) erroneous gestures (ms) Accuracy erroneous gestures (ms) Time (ms) erroneous gestures
G1 -2050 0.69 147 45.5 -2317 -167 0.63
G2 -189 0.36 -110 81.1 -95 -703 0.33
G3 -1810 0.54 180 90.4 -370 -2574 0.45
G4 0 0.94 -154 86.7 -84 -0.34 0.90
G5 0 0 -130 71.2 0 -2367 0.09
G6 -146 0.94 -124 87.1 -136 -235 0.90
G8 -970 0.66 -337 67.4 -1842 -610 0.60
G9 -377 0.76 46 63.8 -474 -767 0.60
G10 N/A N/A N/A N/A N/A N/A N/A
G11 N/A N/A 297 76.8 N/A N/A N/A
G2 N/A N/A 397 96.2 N/A N/A N/A
G5 -708 0.75 440 95.1 -228 -2127 0.58
G6 -1562 0.80 38 96.1 -137 -2283 0.70
G11 -307 0.94 -620 80.1 -85 -667 0.73
G12 N/A N/A 6 92.6 N/A N/A N/A

TABLE IX: Effect of the pipeline components on the accuracy

Suturing and Block Transfer tasks, respectively. Having the
notion of context reduces the search-space for erroneous ges-
tures, hence allowing our models to have better TPR/TNR.
However, we note that finding the best trade-off between
TPR/FPR from the ROC while considering the implications
for surgical safety is non-trivial and requires data from real
surgeries, including adverse events and close feedback from
surgeons. On the other hand, the gesture-specific models
result in negative reaction times (later detection of anomalies)
and higher computation times due to the latency introduced
for identifying the context. However, the average reaction
times are still within the 1-1.5 seconds time frame. Thus,
there are still opportunities for issuing timely alerts or
corrective actions (when the error periods are longer) and
for the acceleration of context inference stage and improving
the reaction times.

Error detection with no notion of context achieves com-
petitive performance. With an AUC of 0.71 and 0.74 for
Suturing and Block Transfer tasks, the non-gesture-specific
models can be considered as a good baseline. However, their
high accuracy is partly due to using larger training size data
(samples from all the gesture classes) and learning from
similar error patterns in some of the gesture classes.

Gesture classification performance does not propor-
tionally impact the overall error detection performance.
In other words, some errors can still be detected even if the
gestures are mis-classified. This is because some gestures
have very similar error patterns or common failure modes.

Fig. 9: Best, median and worst ROC curves for the whole pipeline
in non-context-specific (baseline) and context-specific setups

For example, for Suturing, the gestures G4 and G6 both have
the same failure mode where ”the needle holder is not in view
at all times”.

Having perfect gesture boundaries leads to improved
AUC and reaction time. When we look at the effect of the
gesture classifier on the erroneous gesture detection (Table
IX), we see that for all the gestures, having perfect clas-
sification boundaries would have resulted in better reaction
times and F1 scores for erroneous gestures. This suggests
possible scope of improvement in the direction of gesture
classification, while also suggesting that possibly predicting
the gesture boundary ahead of time could result in better
reaction time. For Suturing in particular, the gestures with
the highest F1 score for the gesture specific pipeline were
G4 and G6, which also had high gesture detection accuracy.

Higher F1 score for detecting erroneous gestures has
the highest impact on the reaction time. As seen in Table
IX, misclassifying gestures or negative jitter values have less
impact on the reaction time. On the other hand, the best
reaction time is -0.34 ms for G4, which also had the highest
F1 score for detecting erroneous gestures.

1-D CNN performs better than LSTM models for
detecting erroneous gestures. Firstly, we are only classi-
fying kinematics samples within a gesture to safe or unsafe,
instead of across the entire trajectory, meaning that there
is no long/short-term dependency over the class. Secondly,
1D-CNNs benefit from the feature extraction of the Convo-
lutional layers to learn a good mapping between the gesture-
specific patterns and the binary labels. Combining Con-
volutional layers with LSTM units would greatly increase
the computational cost of the pipeline and potentially the
timeliness of the monitor, thus, it was not considered here.

VII. RELATED WORK

Safety and Security in Medical Robotics: Safety is
widely recognized as a crucial system property in medi-
cal robotics. Previous work [46] introduced a conceptual
framework that can capture both the design-time and run-
time characteristics of safety features of medical robotic
systems in a systematic and structured manner. In [7], a
systems-theoretic hazard analysis technique (STPA) was used

10

to identify the potential safety hazard scenarios and their con-
tributing causes in the RAVEN II surgical platform and the
corresponding real adverse events reported in robotic surgery
[3]. [6] proposed an anomaly detection technique based
on real-time simulation of surgical robot dynamic behavior
and preemptive detection of safety hazards such as abrupt
jumps of end-effectors. [19] presented a monitoring system
for real-time identification of subtasks using unsupervised
techniques and detecting errors based on subtask-specific
safety constraints learned from fault-free demonstrations.
[47] presented a system to predict unsafe manipulation in
robot-assisted retinal surgery by measuring small scleral
forces and predicting force safety status.

Coble et al. proposed using remote software attestation
for verification of potentially compromised surgical robot
control software in unattended environments such as the
battlefield [48]. Other works have focused on improving the
security of surgical robots by introducing new networking
protocols such as Secure and Statistically Reliable UDP
(SSR-UDP) [49] and Secure ITP [50] that aim at increasing
reliability and confidentiality of surgeon’s commands.

Our work has the similar goal of early detection and
mitigation of safety-critical events as [6], [19], but it is
the first attempt at using supervised deep learning methods
for online and gesture-specific safety monitoring. It can
be used in conjunction with the mechanisms proposed by
the previous works to improve resilience of surgical robots
against both errors and attacks.

Surgical Workflow Analysis: Automatic analysis of sur-
gical workflow for surgeon skill evaluation and surgical
outcome prediction has been the subject of many previous
works. In [21], authors modeled minimally invasive pro-
cedures as stochastic processes using Markov chains and
used kinematics data along with dynamics of surgical tools
for decomposing complex surgical tasks. [51] presented a
feature collection, processing and classification pipeline for
automatic detection and segmentation of surgical gestures
(surgemes) in dry-lab settings. [52] showed that Recurrent
Neural Networks can be used for the task of gesture recog-
nition, while maintaining smooth boundaries over time. In
[25], authors proposed RP-Net, a modified version of Incep-
tionV3 model [53], for automatic surgical activity recogni-
tion during robot-assisted radical prostatectomy (RARP) pro-
cedures. [54] combined formal knowledge, represented by an
ontology, and experience-based knowledge, represented by
training samples, to recognize current phase of a surgery for
context-aware information filtering. In this work, we focus
on modeling the surgical context similar to the Markov chain
models presented in [21] and on identifying the surgical
gestures based on time-series data similar to [52]. However,
our main goal is to detect the erroneous gestures.

Context-Aware Monitoring: Context-aware anomaly de-
tection has been the focus of many recent works on safety-
critical systems. For example, in [55] a context-aware rea-
soning framework with sensor data fusion and anomaly
detection mechanisms was developed to support personalized
healthcare services at home for the elderly. [56] showed that

using the notion of context and incorporating usual behav-
ior of services leads to improved detection accuracy over
traditional detection mechanisms for critical service oriented
architectures. [57] provided a framework for context-based
detection of network intrusions by incorporating protocol
context and byte sequences. Our work shares similarities with
the aforementioned by incorporating context for improving
anomaly detection, but it relies on deep learning for real-time
context-inference and anomaly detection in robotic surgery.

VIII. THREATS TO VALIDITY

Our solution relies on the accuracy and generalizability
of DNNs for detecting the operational context followed by
the context-specific errors. While DNNs have been widely
successful across many domains, slight perturbations in the
input data brought about by the noise in the environment
[58] or attacks [59] can lead them to misclassify with high
confidence. However, most of the proposed adversarial ex-
amples on DNNs target image-based classification systems.
Our safety monitoring system is based on kinematics samples
and we only use computer vision for orthogonal labeling
of failures. A further robustness analysis and design of our
ML-based safety monitor against accidental and malicious
perturbations is the subject of future work.

In addition, the performance of supervised learning models
heavily depends on the accurate labeling of the operational
context, or surgical gestures, and the context-specific anoma-
lies, or erroneous gestures. Our labeling of the erroneous
gestures for the JIGSAWS dataset was based on the human
annotations of the corresponding videos. We labeled any
gesture that had an occurrence of an anomaly as erroneous
even if the error did not occur at the beginning of the gesture.
Future work will focus on automated labeling of trajectory
data from real surgical tasks (similar to our automated
labeling of Block Transfer task on RAVEN II robot using
video data) for more precise localization of errors.

IX. CONCLUSION

We presented an end-to-end safety monitoring system for
real-time context-aware identification of erroneous gestures
in robotic surgery. Our preliminary results show the promise
of our kinematics-only based solution in timely and accurate
detection of unsafe events, even when the vision data might
not be available or be sub-optimal. Our experimental results
validate the need for context-aware monitoring, while also
suggesting that some surgical gestures have similar error-
patterns and can potentially be better monitored together as
a sequence. Our results also show the potential for early
detection and prevention of these unsafe events, which could
be further enhanced by having access to larger training
datasets and extending the semantics of context using vision
or other sensing modalities. Future work will focus on the
generalization of our solution to a wider set of realistic
surgical gestures and tasks with a larger number of trials. We
also plan to further improve the accuracy and timeliness of
our safety monitoring system to enable successful prevention
of safety-critical events during surgery.

11

REFERENCES

[1] Intuitive Surgical, Inc., “2017 Annual Report,” http:
//www.annualreports.com/HostedData/AnnualReportArchive/i/
NASDAQ ISRG 2017.pdf.

[2] G.-Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E.
Dupont, N. Hata, P. Kazanzides, S. Martel, R. V. Patel et al., “Medical
robotics—regulatory, ethical, and legal considerations for increasing
levels of autonomy,” Sci. Robot, vol. 2, no. 4, p. 8638, 2017.

[3] H. Alemzadeh, J. Raman, N. Leveson, Z. Kalbarczyk, and R. K. Iyer,
“Adverse events in robotic surgery: a retrospective study of 14 years
of fda data,” PloS one, vol. 11, no. 4, p. e0151470, 2016.

[4] E. Rajih, C. Tholomier, B. Cormier, V. Samouëlian, T. Warkus,
M. Liberman, H. Widmer, J.-B. Lattouf, A. M. Alenizi, M. Meskawi
et al., “Error reporting from the da vinci surgical system in robotic
surgery: A canadian multispecialty experience at a single academic
centre,” Canadian Urological Association Journal, vol. 11, no. 5, p.
E197, 2017.

[5] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck, “To
make a robot secure: An experimental analysis of cyber security threats
against teleoperated surgical robots,” arXiv preprint arXiv:1504.04339,
2015.

[6] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk, and
R. K. Iyer, “Targeted attacks on teleoperated surgical robots: dynamic
model-based detection and mitigation,” in Dependable Systems and
Networks (DSN), 2016 46th Annual IEEE/IFIP International Confer-
ence on. IEEE, 2016, pp. 395–406.

[7] H. Alemzadeh, D. Chen, A. Lewis, Z. Kalbarczyk, J. Raman, N. Leve-
son, and R. Iyer, “Systems-theoretic safety assessment of robotic
telesurgical systems,” in International conference on computer safety,
reliability, and security. Springer, 2014, pp. 213–227.

[8] T. R. Eubanks, R. H. Clements, D. Pohl, N. Williams, D. C. Schaad,
S. Horgan, and C. Pellegrini, “An objective scoring system for laparo-
scopic cholecystectomy,” Journal of the American College of Surgeons,
vol. 189, no. 6, pp. 566–574, 1999.

[9] O. Elhage, B. Challacombe, A. Shortland, and P. Dasgupta, “An
assessment of the physical impact of complex surgical tasks on
surgeon errors and discomfort: a comparison between robot-assisted,
laparoscopic and open approaches,” BJU international, vol. 115, no. 2,
pp. 274–281, 2015.

[10] P. Joice, G. Hanna, and A. Cuschieri, “Errors enacted during endo-
scopic surgery - a human reliability analysis,” Applied ergonomics,
vol. 29, no. 6, pp. 409–414, 1998.

[11] N. Leveson, Engineering a safer world: Systems thinking applied to
safety. MIT press, 2011.

[12] B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng,
D. Glozman, J. Ma, S. N. Kosari, and L. White, “Raven-ii: an
open platform for surgical robotics research,” IEEE Transactions on
Biomedical Engineering, vol. 60, no. 4, pp. 954–959, 2012.

[13] R. P. Goldberg, M. Hanuschik, H. Hazebrouck, P. Millman, D. Kapoor,
J. Zabinski, D. Robinson, D. Weir, and S. J. Brogna, “Ergonomic
surgeon control console in robotic surgical systems,” Feb. 21 2012,
uS Patent 8,120,301.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[15] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[16] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor,
and S. P. DiMaio, “An open-source research kit for the da vinci®
surgical system,” in 2014 IEEE international conference on robotics
and automation (ICRA). IEEE, 2014, pp. 6434–6439.

[17] E. M. Bonrath, N. J. Dedy, B. Zevin, and T. P. Grantcharov, “Defining
technical errors in laparoscopic surgery: a systematic review,” Surgical
endoscopy, vol. 27, no. 8, pp. 2678–2691, 2013.

[18] E. Bonrath, B. Zevin, N. Dedy, and T. Grantcharov, “Error rating tool
to identify and analyse technical errors and events in laparoscopic
surgery,” British Journal of Surgery, vol. 100, no. 8, pp. 1080–1088,
2013.

[19] M. S. Yasar, D. Evans, and H. Alemzadeh, “Context-aware monitoring
in robotic surgery,” in 2019 International Symposium on Medical
Robotics (ISMR). IEEE, 2019, pp. 1–7.

[20] D. Neumuth, F. Loebe, H. Herre, and T. Neumuth, “Modeling surgical
processes: A four-level translational approach,” Artificial intelligence
in medicine, vol. 51, no. 3, pp. 147–161, 2011.

[21] J. Rosen, J. D. Brown, L. Chang, M. N. Sinanan, and B. Hannaford,
“Generalized approach for modeling minimally invasive surgery as a
stochastic process using a discrete markov model,” IEEE Transactions
on Biomedical engineering, vol. 53, no. 3, pp. 399–413, 2006.

[22] J. H. Peters, G. M. Fried, L. L. Swanstrom, N. J. Soper, L. F. Sillin,
B. Schirmer, K. Hoffman, S. F. Committee et al., “Development and
validation of a comprehensive program of education and assessment
of the basic fundamentals of laparoscopic surgery,” Surgery, vol. 135,
no. 1, pp. 21–27, 2004.

[23] Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan, H. C.
Lin, L. Tao, L. Zappella, B. Béjar, D. D. Yuh et al., “Jhu-isi gesture and
skill assessment working set (JIGSAWS): A surgical activity dataset
for human motion modeling,” in MICCAI Workshop: M2CAI, vol. 3,
2014, p. 3.

[24] C. E. Reiley and G. D. Hager, “Decomposition of robotic surgical
tasks: an analysis of subtasks and their correlation to skill,” in M2CAI
workshop. MICCAI, London, 2009.

[25] A. Zia, A. Hung, I. Essa, and A. Jarc, “Surgical activity recognition
in robot-assisted radical prostatectomy using deep learning,” in In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2018, pp. 273–280.

[26] A. J. Hung, J. Chen, Z. Che, T. Nilanon, A. Jarc, M. Titus, P. J.
Oh, I. S. Gill, and Y. Liu, “Utilizing machine learning and automated
performance metrics to evaluate robot-assisted radical prostatectomy
performance and predict outcomes,” Journal of endourology, vol. 32,
no. 5, pp. 438–444, 2018.

[27] A. Zia, L. Guo, L. Zhou, I. Essa, and A. Jarc, “Novel evaluation
of surgical activity recognition models using task-based efficiency
metrics,” International journal of computer assisted radiology and
surgery, pp. 1–9, 2019.

[28] N. Ahmidi, P. Poddar, J. D. Jones, S. S. Vedula, L. Ishii, G. D.
Hager, and M. Ishii, “Automated objective surgical skill assessment
in the operating room from unstructured tool motion in septoplasty,”
International journal of computer assisted radiology and surgery,
vol. 10, no. 6, pp. 981–991, 2015.

[29] M. J. Fard, S. Ameri, R. Darin Ellis, R. B. Chinnam, A. K. Pandya,
and M. D. Klein, “Automated robot-assisted surgical skill evaluation:
Predictive analytics approach,” The International Journal of Medical
Robotics and Computer Assisted Surgery, vol. 14, no. 1, p. e1850,
2018.

[30] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Evaluating surgical skills from kinematic data using convolutional
neural networks,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2018, pp.
214–221.

[31] K. Moorthy, Y. Munz, A. Dosis, F. Bello, A. Chang, and A. Darzi, “Bi-
modal assessment of laparoscopic suturing skills,” Surgical Endoscopy
And Other Interventional Techniques, vol. 18, no. 11, pp. 1608–1612,
2004.

[32] M. R. Kwaan, D. M. Studdert, M. J. Zinner, and A. A. Gawande,
“Incidence, patterns, and prevention of wrong-site surgery,” Archives
of surgery, vol. 141, no. 4, pp. 353–358, 2006.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[34] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and
K. Goldberg, “Transition state clustering: Unsupervised surgical trajec-
tory segmentation for robot learning,” in Robotics Research. Springer,
2018, pp. 91–110.

[35] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] M. Hermans and B. Schrauwen, “Training and analysing deep recur-
rent neural networks,” in Advances in neural information processing
systems, 2013, pp. 190–198.

[38] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international con-
ference on machine learning (ICML-10), 2010, pp. 807–814.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[40] F. Chollet et al., “Keras,” 2015.

12

[41] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 265–283.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learn-
ing research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[44] C. Lea, G. D. Hager, and R. Vidal, “An improved model for seg-
mentation and recognition of fine-grained activities with application
to surgical training tasks,” in 2015 IEEE winter conference on appli-
cations of computer vision. IEEE, 2015, pp. 1123–1129.

[45] S. Sefati, N. J. Cowan, and R. Vidal, “Learning shared, discriminative
dictionaries for surgical gesture segmentation and classification,” in
MICCAI Workshop: M2CAI, vol. 4, 2015.

[46] M. Y. Jung, R. H. Taylor, and P. Kazanzides, “Safety design view: A
conceptual framework for systematic understanding of safety features
of medical robot systems,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 1883–1888.

[47] C. He, N. Patel, I. Iordachita, and M. Kobilarov, “Enabling technology
for safe robot-assisted retinal surgery: Early warning for unsafe scleral
force,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3889–3894.

[48] K. Coble, W. Wang, B. Chu, and Z. Li, “Secure software attesta-
tion for military telesurgical robot systems,” in 2010-MILCOM 2010
MILITARY COMMUNICATIONS CONFERENCE. IEEE, 2010, pp.
965–970.

[49] M. E. Tozal, Y. Wang, E. Al-Shaer, K. Sarac, B. Thuraisingham,
and B.-T. Chu, “On secure and resilient telesurgery communications
over unreliable networks,” in 2011 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2011,
pp. 714–719.

[50] G. S. Lee and B. Thuraisingham, “Cyberphysical systems security
applied to telesurgical robotics,” Computer Standards & Interfaces,
vol. 34, no. 1, pp. 225–229, 2012.

[51] H. C. Lin, I. Shafran, D. Yuh, and G. D. Hager, “Towards automatic
skill evaluation: Detection and segmentation of robot-assisted surgical
motions,” Computer Aided Surgery, vol. 11, no. 5, pp. 220–230, 2006.

[52] R. DiPietro, C. Lea, A. Malpani, N. Ahmidi, S. S. Vedula, G. I. Lee,
M. R. Lee, and G. D. Hager, “Recognizing surgical activities with
recurrent neural networks,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer,
2016, pp. 551–558.

[53] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 2818–2826.

[54] D. Katić, A.-L. Wekerle, J. Görtler, P. Spengler, S. Bodenstedt,
S. Röhl, S. Suwelack, H. G. Kenngott, M. Wagner, B. P. Müller-Stich
et al., “Context-aware augmented reality in laparoscopic surgery,”
Computerized Medical Imaging and Graphics, vol. 37, no. 2, pp. 174–
182, 2013.

[55] B. Yuan and J. Herbert, “Context-aware hybrid reasoning framework
for pervasive healthcare,” Personal and ubiquitous computing, vol. 18,
no. 4, pp. 865–881, 2014.

[56] T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Context-awareness to
improve anomaly detection in dynamic service oriented architectures,”
in International Conference on Computer Safety, Reliability, and
Security. Springer, 2016, pp. 145–158.

[57] P. Duessel, C. Gehl, U. Flegel, S. Dietrich, and M. Meier, “De-
tecting zero-day attacks using context-aware anomaly detection at
the application-layer,” International Journal of Information Security,
vol. 16, no. 5, pp. 475–490, 2017.

[58] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the ro-
bustness of deep neural networks via stability training,” in Proceedings
of the ieee conference on computer vision and pattern recognition,
2016, pp. 4480–4488.

[59] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

13

