

Targeted Attacks on Teleoperated Surgical Robots:
Dynamic Model-based Detection and Mitigation

Homa Alemzadeh, Daniel Chen, Xiao Li*, Thenkurussi Kesavadas*, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{alemzad1, dchen8, kalbarcz, rkiyer}@illinois.edu
*Health Care Engineering Systems Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{xiaoli16, kesh}@illinois.edu

Abstract—This paper demonstrates targeted cyber-physical

attacks on teleoperated surgical robots. These attacks exploit
vulnerabilities in the robot’s control system to infer a critical time
during surgery to drive injection of malicious control commands
to the robot. We show that these attacks can evade the safety
checks of the robot, lead to catastrophic consequences in the
physical system (e.g., sudden jumps of robotic arms or system’s
transition to an unwanted halt state), and cause patient injury,
robot damage, or system unavailability in the middle of a surgery.
We present a model-based analysis framework that can estimate
the consequences of control commands through real-time
computation of robot’s dynamics. Our experiments on the
RAVEN II robot demonstrate that this framework can detect and
mitigate the malicious commands before they manifest in the
physical system with an average accuracy of 90%.

Keywords—Targeted Attacks, Malware, Telerobotics, Robotic
Surgery, RAVEN II robot, Cyber-physical systems

I. INTRODUCTION
Robotic surgical systems are among the most complex

medical cyber-physical systems. They enable performing
minimally invasive procedures with better visualization and
increased precision using 3D magnified views of the surgical
field and tele-manipulated arms and instruments that mimic
human hand movements. During 2007-2013, over 1.74 million
robotic procedures were performed in the U.S. across various
surgical specialties, including gynecology, urology, general
surgery, cardiothoracic, and head and neck surgery [1]. The next
generation of surgical systems are envisioned to be teleoperated
robots that can operate in remote and extreme environments
such as disaster-stricken areas, battlefields, and outer space [2].

Past studies have emphasized the importance of security
attacks that compromise the communication channels in
medical devices such as implantable cardiac defibrillators [3],
wearable insulin pumps [4], and teleoperated surgical robots
[5]-[8]. For example, studies [7] and [8] demonstrated denial of
service (DOS) and man-in-the-middle (MITM) attacks on the
network communication between the teleoperation console and
the control system of a surgical robot. To the best of our
knowledge, no previous work has discussed the possibility of
directly compromising the control systems of surgical robots. It
is usually assumed that getting access to the robot control
system is unlikely.

 In this paper, we demonstrate cyber-physical attacks on the
control system of surgical robots in the event when the attacker
is able to install a malware to strategically inject faults into the
control system at critical junctures during surgery. In order to
install the malware, we assume that the attacker has access to the
system as an insider or through remote code execution. The
malware modifies the control commands while preserving their
legitimate format, making this type of attacks difficult to detect
without understanding the dynamics of the robot’s manipulators.

To detect and mitigate such attacks, we have developed a
model-based analysis framework based on the dynamics of the
surgical robot and use it to preemptively determine if a
command is malicious before the actual execution of the
command can progress in the physical robot. We validated the
detection experimentally using two real attack scenarios
involving injection of unintended user inputs and unintended
motor torque commands.

The attacks are deployed via a self-triggered malware with
embedded: (i) logging mechanisms for collecting and analyzing
measurements from the surgical robot in order to identify the
critical states and (ii) fault-injection mechanisms for inserting
malicious commands into the robot control system. The
deployment of the malware presumes that the attacker has
penetrated the hospital network by exploiting vulnerabilities in
the underlying hospital network and has obtained access to the
robot control system by exploiting a zero-day remote code
execution vulnerability (similar to the ones listed in Table III).
This is a credible threat as recent reports indicate the existence
of many vulnerabilities in hospital networks [9], in commonly
used hospital medical devices [10], and in the software firewall
of surgical robots [11], that allow attackers to gain access to
critical medical devices.

The cyber-physical attack scenarios presented in this paper
have the following important characteristics that complicate
their detection and diagnosis:

1) Attacks exploit the TOCTOU (time of check-time of use)
vulnerability between the safety checks on the commands
and the actual execution of the commands.

2) Attacks are initiated in the cyber domain by modifying the
control commands while preserving their legitimate format
and syntax, i.e., no change to the control flow (in terms of
the sequence of the functional blocks invoked) and no

2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4673-8891-7/16 $31.00 © 2016 IEEE

DOI 10.1109/DSN.2016.43

395

change to the performance of the target program (preserving
the real-time constrains of the robot control software).

3) Attacks directly result in catastrophic consequences in the
physical domain (e.g., abrupt jump of the robotic arms),
causing damage to the robot or harm to the patient. They are
hard to distinguish from incidents caused by system or
human induced accidental failures and therein lies the
importance of these attacks–answering the question why
attacker does not simply kill the robot. If deployed on wide
scale, such attacks could cause major disruption and damage
to surgical facilities and cause financial or legal impacts.

 We illustrate the attacks by implementing a prototype of the
malware targeting the RAVEN II robot, an open-source
platform for research in teleoperated robotic surgery [12]. We
use the RAVEN robot as our experimental platform for several
reasons: (i) it contains the typical control and safety mechanisms
used in the state-of-the-art robotic surgical systems, (ii) it is a
platform indicative of the next-generation teleoperated surgical
robots with both remote operability and networking features,
and (iii) it is accessible for demonstrating security attacks and
studying their impact without the need to interrupt real surgical
procedures or risk of harming patients.

Our experiments on the RAVEN II robot demonstrate that:
a) injecting malicious commands to motor controllers can lead
to abrupt jumps of a few millimeters in the robot manipulators
within only a few milliseconds and b) our dynamic model-based
analysis framework can detect malicious commands and
mitigate their impact before they manifest in the physical
system, with an average accuracy of 90%.

II. BACKGROUND

A. Robotic Surgical Systems
Surgical robots are designed as human-operated robotically-

controlled systems, consisting of a teleoperation console, a
robot control system, and a patient-side cart (which hosts the
robotic arms, holding the surgical endoscope and instruments).
The most critical component of the robot control is the electronic
control system, which is responsible for the following:

• Receiving the surgeon’s commands issued using master
manipulators and foot pedals on the teleoperation console.

• Translating the surgeon’s commands into the
corresponding surgical robot movements.

• Providing video feedback of the surgical field (inside
patient’s body) to the surgeon through 3D vision on the
teleoperation console.

• Performing safety checks on to ensure the safe operation
of the surgical robot.

Figure 1(a) shows the typical control system structure of a
surgical robot based on our review of publicly available
documents on commercial and open-source robotic surgical
platforms including da Vinci Surgical System [13][14], the da
Vinci Research Kit [15], and the RAVEN II robot [12][16]. In
this paper we use the RAVEN II robot as an experimental
platform for implementing the attack scenarios and
characterizing the robot’s resiliency to those attacks. We treat
the RAVEN robot as a grey box system. (i.e., we do not have
any access to the robot’s source code.)

B. RAVEN II Robotic Surgical Platform
Figure 1(d) depicts the configuration of the RAVEN II

system. The desired position and orientation of robotic arms,
foot pedal status, and robot control mode are sent from the
teleoperation or master console (not shown in the figure) to the
robotic control software over the network using the
Interoperable Teleoperation Protocol (ITP), a protocol based on
the UDP packet protocol. The control software receives the user
packets, translates them into motor commands, and sends them
to the control hardware, which enables the movement of robotic
arms and surgical instruments. The robot consists of two cable-
driven surgical manipulators attached with tool interfaces and
the instruments. Each surgical manipulator is operated by DC
motors and has seven degrees of freedom [12].

As shown in Figure 1(b), the control software runs as a node
(process) on the Robotic Operating System (ROS) middleware
[17] on top of a real-time (RT-Preempt) Linux kernel. It
communicates with the motor controllers and a Programmable
Logic Controller (PLC) through two custom 8-channel USB
interface boards. The interface boards include commodity
programmable devices, digital to analog converters, and
encoder readers. The motor controllers send movement
commands (torque values calculated based on the desired joint
positions) to the DC motors and read back the encoder values
from the motors (to estimate the current joint positions). The
PLC controls the fail-safe brakes on the robotic joints and
monitors the system state by communicating with the robotic
software.

(a) (b) (c) (d)
Figure 1. (a) Typical control structure in surgical robots, (b) Software and hardware control loops in the RAVEN II robot, (c) Operational state machine of the
RAVEN II robot, d) RAVEN II surgical platform [12].

396

As shown in Figure 1(c), the RAVEN control system goes
through an initialization phase before getting ready for the
operation. During the initialization phase, the mechanical and
electronic components of the system are tested to detect any
faults or problems. After successful initialization, the robot
enters the “Pedal Up” state, in which the robot is ready for
teleoperation but the brakes are engaged. When the foot pedal
is pressed by the human operator, the robot moves to the “Pedal
Down” state. In this state the brakes are released, allowing the
teleoperation console to control the robot [12][16].

Figure 2 shows the kinematic chain of the RAVEN control
software. The operator commands are sent to the control
software as incremental motions (desired end-effector positions
(pos_d) and orientations (ori_d)). The current end-effector’s
configurations (pos and ori) are calculated based on motor
encoder feedback using forward kinematics function. The
inverse kinematics calculates the joint (jpos_d) and motor
(mpos_d) positions that are required to obtain the desired end-
effector configurations and positions. Finally, the amount of
torque needed for each motor to reach its new position is
obtained from a Proportional-Interal-Derivitive (PID)
controller. The motor torques are then transferred in the form of
DAC commands (DAC_value) to the motor controllers on the
USB boards, to be executed on the motors [18].

Figure 2. The kinematics chain in the RAVEN II control software

The RAVEN II robot has the following safety mechanisms [12]:
• A physical start button should be pressed to take the robot

out of the emergency stop (“E-STOP”) state. At any time
pressing the emergency stop button will immediately stop
the robot by putting the PLC and control software into the
“E-STOP” state (see Figure 1(c)).

• Whenever the human operator lifts the foot from the pedal,
the system enters the “Pedal Up” state and engages the
fail-safe power-off brakes on the motors and disengages
the master console from manipulating the surgical arms.

• The control software performs safety checks on the motor
controller commands before they are sent to the USB I/O
boards. These safety checks compare the electrical current
commands sent to the digital to analog converters (DACs)

with a set of pre-defined thresholds to ensure the motors
and arm joints do not move beyond their safety limits.

• The control software sends a periodic (I’m alive) square-
wave watchdog signal to the PLC through the USB boards.
Upon detecting any unsafe motor commands, the control
software stops sending the watchdog signal. The PLC
safety processor monitors the watchdog signal and in
absence of the watchdog signal puts the system in the
Emergency-Stop (“E-STOP”) state.

III. CYBER-PHYSICAL ATTACKS ON THE RAVEN II ROBOT
Previous studies on fault-injection based safety assessment

of RAVEN II system have shown several vulnerabilities in the
safety mechanisms of the robot [19][20]. In this paper, we show
that malicious parties can exploit such vulnerabilities to perform

cyber-physical attacks that are difficult to be detected without
modeling the robot’s dynamics.

The attacks exploit the dynamic loading feature for system
libraries in the underlying Linux OS and vulnerabilities in
RAVEN II software-hardware interface to inject malicious
actions at different layers of the robot control structure (shown
in Figure 1(a)). The attacks can cause a variety of adverse
impacts on the robot functionality, the patient, and these
impacts are potentially difficult to distinguish from unexpected
failures. TABLE I summarizes variants of those attacks,
categorized by the target layer in the control structure (see the
red marks in Figure 2), the target system library, the type of
malicious action, and their observed impact on the system (as
reported in [20]). We specifically focuse on two attack
scenarios that cannot be detected and mitigated by the existing
safety mechanisms in the RAVEN II robot:

A. Injection of unintended user inputs after they are
received by the control software. These attacks either cause
hijacking the control of the robot by performing an action
that was not initiated by the operator or lead to unintended
jumps and unwanted halt states.

B. Injection of unintended motor torque commands after
they have passed the safety checks and before transmission
to the USB interface boards and motor controllers. These
attacks can lead to unintended moves and abrupt jumps of
the robot or unwanted halt states.

TABLE I. VARIANTS OF ATTACKS ON ROBOT CONTROL STRUCTURE

Target
Layer

Target
System
Library

Malicious
Action

Observed
Impact

Master Console
and Control

Software

Socket comm.
(bind,
received_from)

Change
-port number
-packet content

Hijack trajectory
Unwanted state (E-
STOP)

Control
Software

Math
(sin, cos)

Add drift to
-output
-input

Unwanted state
(IK-fail)

Control
Software and

Hardware Interface
(read, write)

Change
-robot state in PLC

Homing Failure

Software and
Physical Robot

Change
-motor commands
-encoder feedback

Abrupt Jump/
Unwanted state (E-
STOP)

397

We exemplify the attacks by deploying attack scenario B
(described above) on the RAVEN II robot. We used a desktop
computer running RAVEN II software on top of ROS Indigo
and Linux Ubuntu 14.04 LTS with SMP Preempt Real-time
kernel. The machine contained an Intel Core i5 CPU@2.90
GHz and 8GB of RAM. The malicious code was implemented
using bash, Python scripts, and ROS commands and was
executed in the user space (no root privilege was needed to
execute the malware).

A. Attack Model
We focus on the steps taken after the attacker has obtained

remote access to a robot control system on a hospital’s network.
The attacker can gain such access by exploiting weaknesses such
as vulnerable services, unpatched medical devices, stolen
credentials, or insider attacks to penetrate the hospital network.
Once in the hospital network, the attacker can move laterally
across devices within the hospital, steal additional credentials
and discover vulnerabilities until the target robot control system
is located and penetrated. The attacks discovered by TrapX
Security, Inc. [10], the Stuxnet attack [21], and the discovered
vulnerability in the firewall of a commercial robot [11] serve as
examples of how these penetration attacks could be performed.
Table V shows the common entry points exploited in recent
attacks detected on hospital networks. The purpose is to assert
that access to the robot control system in present day
environments is not only feasible but quite probable.

After getting access to the robot, the intention of the attacker
is to remain on the target system without being detected for as
long as possible in order to (i) collect data from the system, (ii)
analyze the collected data to create an operational profile of the
robot and determine the best time for activating the attack, and
(iii) trigger the attack at the desired critical time.

We assume the attacker does not have access to the source
code or internal design of the robot. The attacker gathers
information about the system configuration and potential
vulnerabilities of the robot through publicly available
documents (e.g., previous publications on vulnerabilities of
RAVEN II robot [8][19][20]) or through a vulnerability
discovery process consisting of targeted probing and fuzzing.

There are specifically two pieces of information that the
attacker must have about the robot in order to perform a

successful attack: (i) the state machine representing robot
operations and (ii) a side channel that can be used to extract the
current state of the robot in order to determine the best time to
trigger an attack. The attacker also needs at least a user privilege
to download and run the malicious code on the system.

B. Attack Description
In the attack scenario illustrated in Figure 3, an attacker (who

penetrated RAVEN control system) first eavesdrops (intercepts)
on the USB communication between the RAVEN control
software and the USB I/O boards. The intercepted packets are
analyzed offline to extract the state information of the surgical
robot, i.e., determine the state of the robot according to the
operational state machine depicted in Figure 1(c). The extracted
data are then used to build a malware for triggering (injecting)
an attack at a critical time during the robot’s operation, i.e., when
the robot is operating in the “Pedal Down” state.

Figure 3 describes the steps to execute the attack on a RAVEN
II robot: These steps are grouped into three phases: Attack
Preparation Phase, Analysis Phase, and Deployment Phase.
The Attack Preparation Phase and the Analysis Phase need to be
performed only once to obtain the information necessary to
design and implement the final malware capable of triggering an
attack when the robot is most vulnerable. The details of each
phase are described next.

1) Attack-Preparation Phase: The goal of the Attack-
Preparation phase is to eavesdrop on the communication
between the RAVEN control software and the USB I/O boards
and send that information to the attacker for offline analysis.
This is achieved by (i) downloading and installing a malicious
shared library on the RAVEN control system, (ii) forcing
processes on the system to link to the malicious shared library,
and (iii) logging the RAVEN USB communication and
forwarding it to the attacker on a remote server using UDP
packets.
 In a Linux system most programs do not communicate
directly with the kernel. Instead, the program invokes a function
in a runtime library (e.g., libc), which performs the necessary
preparation of the arguments and then triggers the corresponding
system call (see Figure 4 for an example of calling the write
system call in the RAVEN control software). When a program

Figure 3. Attack scenario B (injection of unintened motor torque commands) in RAVEN II surgical robot

398

starts, the runtime linker searches the default path to find the
runtime library to be linked. If an environment variable
LD_PRELOAD or the directory /etc/ld.so.preload is defined in
the system, then the linking process is forced to first search, load,
and link to the library object in the path pointed by the
LD_PRELOAD or /etc/ld.so.preload [22]. If the alternative
library object has a function with the same name as function
defined in the original runtime library (e.g., read or write), the
alternative library’s function will be called. This allows the
alternative library to “wrap” the runtime library function,
intercepting system calls. The alternative library function can
call the original system call, not call it, or do some malicious
task before calling it. This approach has been used by several
rootkits to hide their operations [23].
 In implementing the attack scenario B, we exploited the
Linux dynamic linking feature to install malicious system call
wrappers for the write system call in order to eavesdrop on the
commands sent to the robot motor controllers and the safety
PLC through USB. An attacker with the user privilege, can add
the LD_PRELOAD environment variable to user’s startup
profile (e.g., .bashrc), so all future terminals started by this user
will have the LD_PRELOAD environment variable set to point
to the malicious shared library. The attacker with root privilege
can add the path to the malicious shared library to
/etc/ld.so.preload, so that new processes started by any user on
the system link to the malicious shared library. This means that
when any future process makes a write system call, the system
call wrapper in the malicious shared library will be called (see
the malicious wrapper code in Figure 4).

2) Offline Analysis Phase: The goal of the Analysis Phase
is to discover state information of the surgical robot from the
logged USB communication. From the publicly available
documents on the RAVEN II robot (e.g., [12][16]), the attacker
can infer that the state information (the robot can be in one of
four states depicted by the operational state machine; see Figure
1(c)) must be transmitted between the RAVEN control software
and the USB I/O boards. The attacker performs an offline
analysis on the USB packets (step 4 in Figure 3) collected from
several robot runs—from initialization to the end of a

teleoperation session—to identify fields in the USB packets that
carry robot’s state information.
 Since the attacker does not know the format of the USB
packets, a simple approach to analyze them is to look at the
values of the packets byte by byte over time to see whether there
are patterns indicating a specific byte that may contain the state
information. Figure 5(a) illustrates sample USB packets (values
of the buf parameter for the write system call) collected in one
run of the robot. Each subplot shows the value of each of the 18
bytes over the course of a run. During this run, the RAVEN robot
was teleoperated using the manipulators on a remote console.
 By analyzing multiple runs, attacker can discover that Byte
0 switches among 8 different values in a surgical run whereas
other bytes either stay constant or switch between many values.
For example, Figure 5(b) and Figure 5(c) show the enlarged plot
of Byte 4 and Byte 0, respectively. A more detailed look at the
values of Byte 0 reveals that the fifth bit toggles periodically
between 0 and 1 (e.g., 0X0F toggles to 0X1F). If we take that bit
out, then Byte 0 only switches among 4 values. Figure 6 shows
the patterns of Byte 0 over nine different runs of the robot. Our
further investigation into the RAVEN II specifications revealed
that the fifth bit of Byte 0 might be the watchdog signal, a square-
wave signal toggling periodically between 0 and 1 to
communicate the healthy status of the robot control software to
the PLC safety processor [16].
 Now, the attacker can combine this information with the
knowledge that the RAVEN robot state machine navigates
through 4 distinct states during a teleoperation. It begins from a
stopped state (“E-Stop”), then upon hitting the start button, it
performs an initialization process (“Init”), then moves to a
standby state (“Pedal Up”), and during the surgical procedure,
moves between the standby state (“Pedal Up”), and the
operational state (“Pedal Down”) (see Figure 1(b)). Putting these
two pieces of information together, the attacker can conclude,
based on several runs of collected data, that Byte 0 most likely
represents the state of the surgical robot and the values 31 (0x1F)
or 15 (0x0F) in Byte 0 indicate that the robot is engaged and in
operation (in the “Pedal Down” state). The red dashed lines in
each subplot of Figure 6, highlight steps corresponding to the
different operational states of the robot that can be inferred from
this data. Similar analysis can be done on the data collected from
the read system calls to eavesdrop on the feedback received
from motor encoders (not shown here due to space limitations).

3) Attack Deployment Phase: The goal of the
Deployment Phase is to install a malicious code that triggers an
attack on the RAVEN II robot when it is engaged in the middle
of a surgical operation. Based on the offline analysis, the
attacker can use Byte 0 as a trigger to determine when to
activate an attack on the robot. There can be other triggers in
addition to Byte 0, but Byte 0 can indicate when the surgical
robot is in the operational (“Pedal Down”) state. Attacking the
robot in other states may not have the desired malicious effect,
e.g., in the “E-STOP” or “Pedal Up” states, the robot is not
engaged and the motor brakes are applied, so no commands sent
to the motors will be executed.

The attacker modifies the write system call wrapper in the
malicious shared library to perform an attack when Byte 0 (in
the USB packets) indicates the “Pedal Down” state in the
robot’s operation. The attack consists of modifying the values

Figure 4. The malicious write system call loaded as a wrapper around the
original write system call on the system. The dashed line shows the original
program flow. The solid lines show the program flow after LD_PRELOAD is
set to point to the malicious wrapper.

399

of other bytes in the USB packets, that represent the control
commands sent to the USB I/O boards by the control software
to drive the motors on the robotic arms.

Previous assessment of the RAVEN control software by
fuzzing the USB packets transferred between the robotic
software and USB I/O boards revealed that the motor
commands issued by the control software are checked before
being sent to the custom USB boards (to make sure they do not
exceed safety limits and the desired joint positions are not
outside of the robot workspace). However, the integrity of the
packets is not checked after the USB boards receive them. Since
the USB I/O boards do not verify the integrity of the received
USB data, a corrupted or incorrect motor command can pass to

the motors causing the robot arm to move to an undesired
location and potentially damage the system or harm the patient.

Figure 4 shows the modified version of the wrapper. The
attacker can deploy the modified shared library to any RAVEN
machine using steps 1 and 2 in the Attack Preparation Phase
(see Figure 3). Now, with every invocation of the write system
call made by the RAVEN control software, instead of logging
the USB communication, the malicious wrapper checks Byte 0
of the buf parameter and automatically triggers an attack if Byte
0 indicates that the robot is in the “Pedal Down” state.

C. Attack Evaluation

To asses the impact of the attacks on the progress of the
surgery and the health of patient, we simulated the attacks on
the write system calls in a surgical simulator for RAVEN II
robot as well as on a real RAVEN II robot. By implementing
the attacks on the simulator, we were able to verify the impact
of the attacks before testing them on the actual robot, which
prevents causing damage to the robotic arms and instruments.

1) Impact on the Physical System: The corruption of
packets sent by the control software to the USB I/O boards was
achieved using malicious wrapper around the write system call
to inject a random value (e.g., between 0 and 100) to one of the
bytes (other than Byte 0). This corruption caused abrupt jumps
of the robotic arms, leading both the RAVEN II software and
hardware to go into the “E-STOP” state. In a few cases, the
abrupt jump of robotic arms, caused the breaking of the cables
on the robot. The visualization of this scenario in the simulator
and on the actual robot is available in [19] and [24].

This disturbance of the robot operation may lead to an
interruption in the surgery, damage to the robotic instruments
due to collision, or harm to the patient in the form of tearing or

(a)

(b)

(c)

Figure 5. The contents of packets transferred in one run of the RAVEN II robot from the robot to one of the USB boards (by calling write systems call). (a)
Each subplot corresponds to a byte in the USB packets. (b) Byte #4 switches between many different values. (c) Byte #0 switches between 8 different values
and if the fifth bit is taken out, it switches between 4 values corresponding to the four distinct states of the robot.

“E-STOP”

 “Homing”

 “Pedal Up”

 “Pedal Down”

Figure 6. The values of Byte 0 in the packets transferred from the robot to
one of the USB boards in a sample of nine different runs. The robot state
(highlighted in red) can be inferred from the changes in the value of Byte0.

400

perforation of tissues if the instruments were inside the body. If
the malicious wrapper is loaded by setting the LD_PRELOAD
in the bashrc file of the target user, the malware will be reloaded
to the system on each run of the robot even after restarting the
system. Consequently, the “E-STOP” condition would happen
on every invocation of the system call and practically make the
robot unavailable to the surgical team.

As discussed in [25], in several safety incidents reported to
the U.S. Food and Drug Administration (FDA), unexpected
movement of robotic instruments due to accidental mechanical
or electrical malfunctions or unintentional human errors (not
malicious attacks) led to tearing or perforation of patient
tissues, bleeding, and minor or severe injuries. Our results show
that similar adverse incidents can be caused by malicious
tampering with the robotic system and potentially harm patients
or interrupt the surgical procedure without being identified as
malicious activity.

2) Impact on the Cyber Domain: We also measured the
performance overhead of the malicious system call wrappers on
the normal operation of the robot and other processes running
in the system. Table II shows the performance overhead of the
malicious wrappers, measured by the execution time of the
write system call wrapper in the RAVEN control process. We
collected measurements before and after installing the
malicious library wrapper in 50,000 runs of the system call.

The average execution time of the baseline write system call
in the RAVEN process was around 1.3 microseconds. The
malicious wrapper for logging the USB packets sent by the
control software (including checking the process name and the
file descriptor and sending the UDP packets to the remote
attacker) on average added 18.7 microseconds to the execution
time of the write system call in the RAVEN process. The
malicious wrapper that injected the malicious bytes to the USB
packets (including checking for the process name and file
descriptor, checking the packet contents to determine if the
desired robot state is reached, and overwriting the malicious
value) added about 2.3 microseconds to the baseline write
system call execution time. These overheads are within the
timing constraints (1 millisecond) of the real-time process
running the robot control software. So the malicious wrapper
does not have any adverse impact on the performance of robot
control and its effect would not be noticed by the human
operators or users of the system.

D. Why this Attack is not Easy to Detect?
In the presented attack scenarios two important

vulnerabilities allow the attacker to identify the critical time
during robot operation and inject the malicious commands: (i)
Linux dynamic loading feature for shared libraries and (ii)
leaking of robot state information from the packets transferred
between the robot control software and the USB I/O boards.

Malicious shared library attacks or dll hijacking attacks
have been around. However, the security community has not
paid much attention to this type of intrusions, because to be
successful, such attacks require access to the file system on the
target machine or a remote shell access. Several recent reports
on attacks to safety-critical cyber-physical systems show the
existence of many vulnerabilities that allow remote malicious
access. Table V shows the entry points and
vulnerabilities exploited by the recent real attacks on the
hospital networks and commonly used medical devices. Table
III shows examples of recent zero-day vulunerablities in
different operating systems allowing remote code execution,
which could be used to download and setup the right scenarios
for malicious shared library attacks.

The malicious shared library attacks presented here cannot
be easily detected in the cyber-domain by the existing malware
detection techniques, because:
1. Malicious actions are confined to the robot control

software:
a) no separate processes are created to run the malware.
b) no system-wide malicious activities are performed
c) the performance of target application is not affected

2. No changes are made to the control flow of the target
process. The functions in the shared library are invoked by
the process following its normal execution flow.

3. No anomaly in the syntax of robot control commands are
introduced.

Furthermore, the surgical robot puts rather stringent real-
time constrains on the system operation (e.g., in RAVEN II the
operational cycle is 1 millisecond). The robot control loop plus
any real-time detection and mitigation actions must complete
within 1 millisecond to avoid potential deviation in system
dynamics, leading to robot damage or patient harm. Traditional
malware detection techniques (e.g., signature- or anomaly-
based and control flow checking), encryption mechanisms
(e.g., “bump-in-the-wire” (BITW) solutions [31][32]), and
remote software attestation [33][34] may introduce significant
overhead in the system operation and still not eliminate the
possibility of TOCTOU exploits. In order to address this
challenge, we develop dynamic model-based detection and
mitigation mechanisms as discussed next.

TABLE III. RECENT ZERO-DAY VULNERABILITIES
ALLOWING REMOTE CODE EXECUTION OR PRIVILEGE ESCALATION

Date
[Ref] CVE Vulnerability Affected

Systems Impact

Jul.
2015
[26]

CVE-2015-5123 Flash Player
Linux,

Windows,
OS X

Gain administrator
shell on target

machine
Jan.
2015
[27]

CVE-2015-0235
(GHOST) Glibc Linux Remote code

execution

Oct.
2014
[28]

CVE-2014-4113 Privilege
Escalation Windows Escalate to

SYSTEM Privilege

Sep.
2014
[29]

CVE-2014-6271
(Shellshock) Bash shell

Linux,
Unix,
OS X

Remote code
execution

Aug.
2015
[30]

CVE-2015-5783 OS X 10.10 Mac Gain root access

TABLE II. PERFORMANCE OVERHEAD OF MALICIOUS SYSTEM CALL
 Time (μs) Min Max Mean Std.

RAVEN
Process

Baseline System Call 0.9 12.7 1.3 0.2
With Malicious Wrapper

 Logging 7.9 38.1 20.0 7.5
Injection 1.5 6.7 3.6 1.1

401

IV. DYNAMIC MODEL-BASED DETECTION AND MITIGATION
In this section we describe the dynamic model-based

analysis framework that we developed for (i) assessing the
impact of attacks on the robot physical system and (ii)
preemptive detection of the attacks and mitigating their impact
before they manifest in the physical domain (see Figure 7). We
validated the detection experimentally using two real attacks
involving injection of unintended user inputs (scenario A) and
unintended control motor torque commands (scenario B).

The dynamic model allows us to determine the subsequent
state of robot end-effectors and the motors incrementally based
on the information on the current state and the real time input
received from the RAVEN control software. The methods for
modeling the serial chain robot manipulators and RAVEN II
robot dynamics are well understood in the literature and we
briefly outline them for completeness. What is important here
is to ensure that the output of the dynamic model closely
follows the actual robot movements in real-time so that the
detection is performed accurately.

To preemptively detect and mitigate the impact of attacks,
the detection mechanisms need to dynamically estimate the
consequence of executing a command on the physical system
to ensure the final end-effector movements are within specified
safety limits and within the workspace of the robot. There are
two main challenges for implementing such monitoring
mechanisms at lower layers of the control structure (e.g., at the
interface device or the motor controllers):
1) The detector needs to estimate:

a. Next motor (mpos) and joints positions (jpos) that will
be achieved upon executing a given DAC command.

b. End-effector positions (pos) and orientations (ori) that
result from those commands in the next control loop.

If the estimated next joint position and end-effector position
and ortientation values are beyond a safety limit (defined by a
threshold value) from their current values, the DAC command
should not be delivered to the motors and the robot should move
to a emergency E-STOP state (see Figure 7(b)). Finding a
solution to the above estimation problems requires modeling
the dynamics of physical robot (motors and joint dynamics) for
estimating the next motor and joint positions.

2) The robotic control systems often face tight real-time
constraints. For example, the RAVEN II control loop has a
real-time requirement of receiving and processing each
packet from the USB boards and sending the next control
command to the motor controllers every 1 millisecond.

Thus, any preemptive detection mechanism implemented at the
software or software-physical interface layers should perform
the dynamic state estimations within the real-time constraints
imposed by the robot control design.

A. Framework Overview
Figure 7(a) shows the dynamic model-based simulation
framework that we developed to assess the impact of the attacks
on the physical system and validating the detection and
mitigation mechanisms. The framework consists of:

• A master console emulator that mimics the teleoperation
console functionality by generating user input packets based

on previously collected trajectories of surgical movements
made by a human operator and sends them to the RAVEN
control software.

• A graphic simulator that animates the robot movements in
real time by listening to the ROS topic generating the robot
state and mapping robotic arms and instruments movements
to CAD models of robot mechanical components in a 3D
virtual environment.

• A dynamic model of the RAVEN II physical system, which
integrates the motor dynamics and robot manipulator
dynamics together to model the physical system behavior in
real time.

• An attack injection engine which can create attack
scenarios targeting different layers of robot control structure
by injecting faults into the robot control software modules.

1) Dynamic Model: We simulated the functionality of
RAVEN II surgical robot by developing a software module that
mimics the dynamical behavior of the robotic actuators. This is
done by modeling the MAXON RE40 and RE30 DC motors
used by the robot [12] as well as the robot manipulators (joints).

As shown in Figure 7, this model is integrated with the
RAVEN control software and can run with or without the
physical robot. At each cycle of software control loop (shown
in Figure 2) the model receives the same control commands
(DAC values) sent to the physical robot (calculated based on
the desired joint and motor positions for the next time step) and
estimates the next motor and joint positions.

The challenge in developing the model is to be able to
perform estimations within the time constrains of the robot’s
single iteration through the control loop. To reduce
computational cost while maintaining the model accuracy as
well as the system real time guarantees, we model the robot
manipulator dynamics using the first three (out of seven)
degrees of freedom only (two rotational joints plus one
translational joint). This is reasonable because the first three
joints are positioning joints which contribute most to the
instruments’ end-effectors’ positions, while the other four
degrees of freedom are instrument joints, mainly affecting the
orientation of the end-effectors. The model estimates the next

(a) (b)
Figure 7. (a) Simulation framework for assessment of the impact of attacks.
(b) Dynamic-model based detection and mitigation mechanisms.

402

states of the first three motors and the corresponding joint
states, including shoulder joint (rotational), elbow joint
(rotational), tool insertion/retraction (translational) on one arm.

Two sets of second-order ordinary differential equations
were used to describe the dynamic model of the robot, including
link (joint) and motor dynamics, similar to [35]. The robot
mechanical properties, such as link mass, inertia, and center of
mass location were obtained from the CAD models of the
joints. The coefficients of these models were obtained via
manual tuning based on [35], so that the dynamic model
trajectory and the real robot trajectory are close.

The 4th order Runge-Kutta and explicit Euler methods were
used for calculating the solutions for these equations using the
numerical integration solver (odeint) package in C++. We
validated this dynamic model by comparing the operational
trajectory of the RAVEN II robot with the corresponding trace
generated by the dynamic model. Specifically, we measured the
performance of the dynamic model in terms of the average
estimation error and the required time for performing the
estimation at each robot control cycle. Figure 8 shows the
average run time and average motor and joint position errors for
the 4-th order Runge Kutta and Euler solvers, by calculating the
average of mean absolute errors estimated for each trajectory,
over 10 different runs of model and robot together. As shown
in the table, for the specific trajectories experimented here, the
Euler technique with a step size of 1 millisecond provides us
with the best trade-off between execution time and average
trajectory error. The average execution time of 0.011
milliseconds is within the timing constraint of 1 millisecond of
the RAVEN control loop, which enables running of the model
in parallel with the robot control software.

Figure 8 also shows trajectories of the first three joints and
motors when running the model (blue plot) in parallel with the
physical system (red plot) and both receiving the same control
input, calculated based on the encoder feedback from the real

robot. As we see in the figure the model closely follows the
trajectory of the actual robot.

2) Attack Injection Engine: The core of the attack
injection engine is a software implemented fault-injection tool
that can be programmed to install wrappers around different
system calls in the control software to create the attack
scenarios shown in Table I. The attack injector can inject
malicious inputs/commands with different values and
activation periods to the control software at different times
during a running trajectory (e.g., a surgical operation).

B. Assessing the Impact of Attacks
We used the dynamic model-based simulation framework in

Figure 7(a) for assessing the impact of attack scenarios A and B
by injecting a variety of unintended user inputs (malicious
desired end-effector positions) and malicious motor torque
commands to RAVEN control software. The simulation
framework enabled us to assess the resiliency of the robot by
performing thousands of injections without causing damages to
the real robot. Representative fault injection experiments were
repeated on the actual robot to validate the consistency between
the robot and model behavior. We made the following
observations by simulating these attack scenarios:

1. Malicious torque commands that inject small errors to the
DAC values do not have any impact on the robot state, unless
they are activated for periods of larger than 64 milliseconds.
If injected for shorter periods (e.g., 2-4 milliseconds), they
can cause abrupt jumps in the motor velocities but the impact
do not propagate to the next control loop and do not impact
motor, joint, and end-effector positions, unless larger values
are injected for longer periods. This is due to the fact that the
PID controller inside the control corrects the errors in motor
velocity and motor positions at each cycle of the control
loop. Therefore, to corrupt the physical state of the robot, the
attacker needs to keep injecting malicious values to the
commands over a long enough period of time.

2. The existing safety checks in RAVEN cannot detect the
abrupt jumps resulted from malicious torque commands
(injected after the software safety checks are done) until the
physical system state is corrupted to a point where the PID
control cannot fix the errors anymore. This is because:
(i) these safety mechanisms only check the DAC commands

calculated in software being sent to the robot by
comparing it to a fixed threshold. They do not take into
account the semantics of the control commands and their
consequences in the physical system, i.e., impact of a
DAC command on the state of the robot, motor positions
and velocities, joint positions, and end-effector positions.

(ii) the safety check are done at the latest computation step in
the control software before sending the commands to
physical system. Therefore, there is a TOCTOU gap,
from the time the commands are checked to the time they
are executed on the physical system, allowing attackers
to target the system.

C. Anomaly Detection and Attack Mitigation
In order to preemptively detect the adverse impact of the

attacks on the physical robot, we integrate the dynamic model-
based analysis framework with the robot control system, to

Integration
Method

(Step Size:1 ms)

Avg.
Time/
Step
(ms)

Joint 1
Avg. Error

(% deg.)

Joint 2
Avg. Error

(% deg.)

Joint 3
Avg. Error

(%)

mpos jpos mpos jpos mpos
(deg)

jpos
(mm)

4-th Order
Runge Kutta 0.032 115.0

(2.4)
0.9

(2.4)
178.1
(1.5)

1.8
(2.0)

181.9
(0.3)

1.4
(0.4)

Euler 0.011 136.6
(2.4)

1.0
(2.4)

132.8
(1.4)

1.4
(1.9)

180.6
(0.3)

1.3
(0.3)

Figure 8. Validation of dynamic model: Trajectories generated by the
dynamic model and the robot and average estimation error

403

estimate the consequences of control commands before they are
sent to the motor controllers and are executed on the physical
robot (Figure 7(b)). Our goal is to detect if a given command
will cause an unsafe jump of more than 1 millimeter on the
robot end-effector position within a short period of 1-2
milliseconds (based on feedback from expert surgeons).

We design an anomaly detection mechanism that intercepts
the DAC commands sent by the RAVEN control software and
estimates the values for the next motor velocities and positions
and joint positions using the robot dynamic model in real time.
The detector raises an alert whenever the estimated instant
velocity and acceleration on the first three motors and joints
(the difference between the estimated values for the next step
and current values) are beyond a pre-defined safety threshold
(defined as 1 millimeter jump on end-effectors). The thresholds
used for detecting anomalies are learned through measuring the
maximum instant velocities of each of the variables over 600
fault-free runs of the model with two different trajectories
containing sufficient variability in the movement. To eliminate
the sensitivity of sample statistics to outliers and possible noise
in measurements, we chose values between the 99.8–99.9th
percentiles of instant velocity as the threshold for each variable.
In order to reduce false alarms due to model inaccuracies and
natural noise in the trajectory, the detector fuses the alarms
based on the motor acceleration, motor velocity, and joint
velocity and raises an alert only when all three variables
indicate an abnormality.

Table IV shows the performance of dynamic-model based
anomaly detection mechanism compared to the existing
detection and emergency stop (E-STOP) mechanisms in the
RAVEN II robot in terms of detection accuracy (ACC), true
positive rate (TPR), false positive rate (FPR), and F1-score
(which is a unified measure of precision and recall). The results
were achieved from 1,925 experiments simulating the attack
scenario A and 1,361 simulation runs of the attack scenario B.
Figure 9 shows the impact of attack activation period and
injected error values in scenario B on the probability of adverse
impact on the robot physical system (abrupt jumps of end-
effector positions) and probability of attack detection and
mitigation by the dynamic-model based detection and the robot
safety mechanisms. Each attack scenario with specific distance
error and activation period was repeated for at least 20 times to
achieve confidence in the probability estimates. The conditional

probability of attacks given each injected error value v and
activation period d was estimated by calculating marginal
conditional probabilities from the measured data.

Figure 9 shows that by injecting larger error values and
increasing the activation period the probability of adverse
impact on the physical system increases. Our dynamic-model
based anomaly detection has higher probability of preemptively
detecting the attacks before their impact manifests in the
physical system than the RAVEN safety checks that only detect
the impact after it has already happened. As shown in Table IV,
the dynamic-model based detector could detect the simulated
attacks scenarios with an averaged accuracy of 90% and average
F1-score of 82%. For attack scenarios A and B, there were
respectively 152 and 84 cases where the dynamic–model
detected an abrupt jump on end-effectors while the RAVEN
checks did not detect them. There were a total of 13 true cases
(in scenario A) that our detector missed but RAVEN detected.

The probability of RAVEN safety mechanisms in detecting
and mitigating the adverse impact is always lower than the
probability of adverse impact, i.e., the RAVEN safety checks
cannot detect all the adverse scenarios. Thus, the attacker has a
chance of causing an adverse impact on the physical system by
carefully engineering injections with values that will not be
detected by the robot for even short periods of 2-16 milliseconds
(Figure 9(b)). But this chance is reduced when injecting larger
error values for longer periods (of more than 64 milliseconds).

Upon detection of potential adverse impact on the physical
system, the impact of attacks can be mitigated by either
correcting the malicious control command by forcing the robot
to stay in a previously safe state or stopping the commands from
execution and put the control software into a safe state (E-
STOP). The ideal location for insertion of detection and
mitigation mechanisms are at lower layers of control structure

(a) (b)

Figure 9. Attack detection probability vs. injected error values and attack activation period

Table IV. Dynamic-model based detection performance evaluation,
compared to RAVEN detector

Attack Scenario Technique ACC TPR FPR F1

A
(User inputs)

Dynamic
Model

88.0 89.8 12.4 74.8

RAVEN 84.6 53.3 7.7 57.8
B

(Torque
commands)

Dynamic
Model 92.0 99.8 11.8 89.1

RAVEN 90.7 81.0 4.6 85.1

404

and just before the commands are going to be executed on the
physical robot. This will decrease the probability of TOCTTOU
exploits by requiring attackers to compromise the hardware
controllers which are harder to access compared to control
software. In the RAVEN II robot, the last computational
component before the motor controllers is the microcontroller
inside the USB interface board. The implementation of the
methods for calculating a numerical solution for the ODEs of
the dynamic model might incur high computational costs in
simple hardware controllers (e.g., an 8-bit AVR
microcontroller with 128KB flash memory in RAVEN). One
possible solution is to implement the parallel version of these
estimation techniques on a custom trusted hardware module and
run them concurrently with the robot control system.

V. RELATED WORK

A. Security of Teleoperated Surgical Robots
Previous work on security of telerobotic surgical systems

mainly focused on network and communication-based attacks.
Bonaci et al. performed an experimental analysis of

different cyber-security attacks on the communication between
the surgeon’s console and the robot on a RAVEN II platform
[8]. They evaluated the threats posed by attacks that modify or
manipulate the intent of the surgeon or hijack control of the
robot. They showed that causing the user input packets to be
delayed or get lost in transit to the robot might lead to jerky
motions of the robotic arms or difficulty in performing tasks by
human operators. However, the modification of packet contents
led the safety software to detect the over-current commands
sent to the robot, stop the robot’s electrical and mechanical
components, and prevent harm to the patient.

Tozal et al. used an information coding approach to design
a Secure and Statistically Reliable UDP (SSR-UDP) protocol
that ensures confidentiality and reliability of telesurgical
communications in wireless environments [5]. Lee et al.
proposed Secure ITP, a security enhancement to the
Interoperable Telesurgury Protocol (ITP), introducing
Transport Layer Security (TLS) and Datagram TLS (DTLS)
protocols for authenticating the teleoperation console and slave
robot as well as the surgeon and patient [6].

Most of the previous studies assumed that compromising a
surgeon’s control console or the robot control system is less

likely because physical access to the system is prohibited
through strict monitoring [8]. Only Coble et al. studied the
possibility of compromising the robot software in unattended
environments, such as the battlefield. They proposed the remote
verification of system software and configuration files before
execution, using remote software attestation [34].

B. Attacks on the Hospital Networks
In this work, we assume that attackers exploit one of the

existing vulnerabilities in the hospital networks as described in
the previous work to get access to the telerobotic surgical
systems, without being detected by regular security monitoring
mechanisms, such as intrusion detection systems or remote
software attestation techniques. Table V presents a summary of
the recent reports on real attacks to hospital networks.

For example, TrapX Security Inc. recently discovered three
targeted attacks on a hospital’s network that passed through the
protection of antivirus software, intrusion detection systems,
and firewalls. In one case, the vulnerabilities in a blood gas
analyzer was exploited to establish a backdoor to the whole
hospital network, allowing the attackers to install a malware on
the system and steal patient data records from the hospital. In
another case, the attackers gained unauthorized access to a
clinic workstation, by stealing credentials of an employee
visiting a malicious website and installing a malware in that
machine [10]. In another recent study on a wide range of
medical devices in several hospitals, researchers from Essentia
Health discovered that the internal firewalls used for protecting
surgical robots from external connections might crash upon
running a vulnerability scanner against them and enable
unauthorized access to the robot [11]. In addition, there have
been several recalls and adverse events reported to the FDA on
random attacks on hospital networks in which malware or
viruses infected medical devices such as imaging systems,
causing interruptions in patient therapy [39][40].

VI. CONCLUSION
In this paper, we described the anatomy of targeted attacks

against the control systems of teleoperated surgical robots. We
demonstrated these attacks on the RAVEN II surgical robot and
experimentally evaluated their impact on the operation of the
robot control system and patients. Our results showed that the
attacks can cause either sudden jumps of the robotic arms or

TABLE V. POTENTIAL ENTRY POINTS TO GET ONTO A HOSPITAL NETWORK AND EXAMPLES OF REAL ATTACKS COMPROMISING THEM

Attack Entry Points Description Examples of Real Attacks and Detected
Vulnerabilities

Ref.
(Year)

Third party networks Hospital networks are often connected to third party laboratories,
pharmacies, and vendor networks that, if compromised, can let
data breaches or penetrations into the hospital networks as well.

Two medical centers and more than 3.9 million
individuals were affected by a data breach through a third
party portal/personal health record platform.

[36]
(2015)

Computers used by
physicians, nurses, or
technicians

The computers used by physicians, nurses, and vendor support
technicians for remote access to the hospital network, could be
compromised through credential stealing, virus, and malware.

Email phishing attack compromised personal
information of 3,300 patients.

[37]
(2015)

Vulnerable office
devices

Office devices such as network attached desktops, printers,
faxes, scanners, and security cameras with default or weak
passwords or vulnerable firmware could be an easy entry point.

Default username/passwords for the multi-function
printers and security cameras could be used for access to
other devices on the hospital.

[38]
(2014)

Vulnerable or miss-
configured firewalls,
access points, gateways

Incorrect configurations in the Wifi access points or gateway
machines could expose vulnerabilities or leak information, such
as device ID or hospital network layout, to the public.

Incorrect configuration of a gateway computer leaked
critical information that made it possible for attackers to
locate vulnerable devices within the hospital’s network.

[9]
[11]

(2014)
Vulnerable medical
devices

Medical devices on hospital network may have default/weak
passwords or unpatched software/firmware, which can be
compromised.

Three real-world attacks were detected, where a blood
gas analyzer, a PAC system, and an X-ray machine were
hijacked to open backdoors in hospital networks.

[10]
(2015)

405

unavailability of the system due to an unwanted transition to a
halt state in the middle of surgery. We presented defense
mechanisms that combine understanding of the semantics of
both software and physical components to predict the adverse
consequences of attacks within the real-time constraints of the
control system. The mitigation and assessment methods
presented here can be applied to safety and security validation
of a wider range of safety-critical cyber-physical systems.

VII. ACKNOWLEDGEMENTS
This work was partially supported by the National Science
Foundation under Award Numbers CNS 13-14891 and CNS 15-
45069, and the National Security Agency under Grant Number
H98230-14-C-0141.

REFERENCES
[1] Intuitive Surgical Inc., “Annual Report 2013” Available:

http://phx.corporate-
ir.net/External.File?item=UGFyZW50SUQ9MjIzOTk3fENoaWxkSUQ
9LTF8VHlwZT0z&t=1.

[2] J. Rosen and B. Hannaford, “Doc at a distance,” IEEE Spectrum, vol. 43,
no. 10, pp. 34-39, 2006.

[3] D. Halperin, et al., “Pacemakers and implantable cardiac defibrillators:
Software radio attacks and zero-power defenses,” IEEE Symposium on
Security and Privacy, 2008, pp. 129-142.

[4] C. Li, et al., “Hijacking an insulin pump: Security attacks and defenses
for a diabetes therapy system,” IEEE Conf. on. e-Health Networking
Applications and Services (Healthcom), 2011, pp. 150-156.

[5] M. Tozal et al., “On secure and resilient telesurgery communications over
unreliable networks,” IEEE Conf. on Computer Communications
Workshops, 2011, pp. 714-719.

[6] G. S. Lee and B. Thuraisingham, “Cyberphysical systems security applied
to telesurgical robotics,” Computer Standards & Interfaces, vol. 34, no.
1, pp. 225-229, 2012.

[7] T. Bonaci et al., “Experimental analysis of denial-of-service attacks on
teleoperated robotic systems,” the ACM/IEEE Sixth International Conf.
on Cyber-Physical Systems, 2015, pp. 11-20.

[8] T. Bonaci et al., “To make a robot secure: An experimental analysis of
cyber security threats against teleoperated surgical robots,”
arXiv:1504.04339, 2015.

[9] K. Zetter, “Hospital Networks Are Leaking Data, Leaving Critical
Devices Vulnerable”, Wired Magazine, 2014 [Online]. Available:
http://www.wired.com/2014/06/hospital-networks-leaking-data/.

[10] TrapX Security, Inc., “Anatomy of an Attack – MEDJACK,” 2015
[Online]. Available:
http://deceive.trapx.com/AOAMEDJACK_210_Landing_Page.html.

[11] K. Zetter, “It’s Insanely Easy to Hack Hospital Equipment,” Wired
Magazine, 2014 [Online]. Available:
http://www.wired.com/2014/04/hospital-equipment-vulnerable/.

[12] B. Hannaford, et al., “Raven-II: An open platform for surgical robotics
research,” IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 954-959, 2013.

[13] Intuitive Surgical Inc., “The da Vinci® Surgical System” Available:
http://www.intuitivesurgical.com/products/davinci_surgical_system.

[14] G. Guthart and J. K. Salisbury Jr, "The Intuitive Telesurgery System:
Overview and Application," IEEE ICRA, 2000.

[15] P. Kazanzidesf et al., “An open-source research kit for the da Vinci
Surgical System,” in IEEE ICRA, 2014, pp. 6434-6439.

[16] M. J. Lum, et al., “The RAVEN: Design and validation of a telesurgery
system,” The International Journal of Robotics Research, vol. 28, no. 9,
pp. 1183-1197, 2009.

[17] M. Quigley et al., “ROS: An open-source Robot Operating System,”
ICRA Workshop on Open Source Software, vol. 3, no. 3.2, p. 5, 2009.

[18] Biorobotics Lab, University of Washington, “RAVEN II Source Code,”
[Online]. Available: http://astro.ee.washington.edu/raven2docs/.

[19] H. Alemzadeh et al., “A software framework for simulation of safety
hazards in robotic surgical systems,” SIGBED Review, vol. 12, no. 4,
2015, Special Issue on Medical Cyber Physical Systems Workshop.

[20] H. Alemzadeh, et al., “Systems-theoretic safety assessment of robotic
telesurgical systems,” Computer Safety, Reliability, and Security, LNCS,
vol. 9337, pp. 213-227, Springer, 2015.

[21] N. Falliere, L. O. Murchu, E. Chien, “W32. stuxnet dossier,” Symantec
Corp, White Paper 2011.

[22] M. Kerrisk, “LD.SO(8) - Linux Programmer's Manual”, May 2015
[Online]. Available: http://man7.org/linux/man-pages/man8/ld.so.8.html.

[23] Blackhat Academy, InfoSec Institute, “Jynx2 Sneak Peek & Analysis,”
March 2012 [Online]. Available:
http://resources.infosecinstitute.com/jynx2-sneak-peek-analysis/.

[24] Visualization of attack scenario B on the RAVEN II robot. Available:
https://goo.gl/uzQ2kl.

[25] H. Alemzadeh, et al., “Adverse events in robotic surgery: A retrospective
study of 14 years of FDA data,” to appear in PLOS ONE Journal, 2016
[Online]. Available: http://arxiv.org/abs/1507.03518.

[26] “CVE-2015-5123,” [Online]. Available: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-5123.

[27] “CVE-2015-0235,” [Online]. Available: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-0235.

[28] “CVE-2014-4113,” [Online]. Available: http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-4113.

[29] “CVE-2014-6271,” [Online]. Available: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-6271.

[30] “CVE-2015-5783,” [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-5783.

[31] Schweitzer Engineering Laboratories Inc., “SEL-3021-1 Serial
Encrypting Transceiver Data Sheet” [Online]. Available:
https://www.selinc.com/WorkArea/DownloadAsset.aspx?id=2854.

[32] P. P. Tsang and S. W Smith, “YASIR: A low-latency, high-integrity
security retrofit for legacy SCADA systems,” The IFIP TC 23rd
International Information Security Conf., 2008, pp. 445-459.

[33] C. Castelluccia, et al., “On the difficulty of software-based attestation of
embedded devices,” the 16th ACM Conf. on Computer and
communications security, pp. 400-409, 2009.

[34] K. Coble, et al., “Secure software attestation for military telesurgical robot
systems,” Military Communications Conf., pp. 965-970, 2010.

[35] M. Haghighipanah, et al., “Improving Position Precision of a Servo-
Controlled Elastic Cable Driven Surgical Robot Using Unscent Kalman
Filter,” IROS, 2015.

[36] D. Sears, “Healthcare Breach Shines Spotlight on Third Party Security
Risks,” SecurityScorecard Insights & News, 2015 [Online]. Available:
http://blog.securityscorecard.com/2015/06/17/healthcare-breach-shines-
spotlight-on-third-party-security-risks/.

[37] E. Snell, “Phishing Attack Affects 3,300 Partners HealthCare Patients,”
2015 [Online]. Available: http://healthitsecurity.com/news/phishing-
attack-affects-3300-partners-healthcare-patients.

[38] B. Filkins, “SANS-Norse Health Care Cyberthreat Report,” 2014
[Online]. Available: https://www.sans.org/reading-
room/whitepapers/analyst/health-care-cyberthreat-report-widespread-
compromises-detected-compliance-nightmare-horizon-34735.

[39] U.S. Food and Drug Administration, “Class 2 Device Recall iLab
Ultrasound Imaging System, models 120INS and 240INS,” Available:
http://www.accessdata.fda.gov/SCRIPTs/cdrh/cfdocs/cfres/res.cfm?id=7
3287

[40] U.S. Food and Drug Administration, “MAUDE Adverse Event Report:
PHILIPS MEDICAL SYSTEMS XCELERA LLZ,” Available:
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.CF
M?MDRFOI__ID=1568388.

406

