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Abstract—This paper presents design, implementation and 
evaluation of an efficient embedded hardware for accurate 
automated detection of epileptic seizures. Three hardware 
configurations are proposed and evaluated in terms of accuracy 
of detection, utilization of hardware resources, and power 
consumption. The results show that a solution based on 
combination of the statistical function of variance (for feature 
extraction) and an artificial neural network (ANN) classifier 
allows to achieve high detection accuracy (99.18%) with 
moderate hardware footprint (around 44% of the FPGA 
resources).  Furthermore, use of algorithmic and architectural 
optimization techniques (reduction in precision of the fixed-point 
number representation and reuse of hardware components) 
allows reducing hardware footprint by a factor of 4.4 and power 
consumption by a factor of 2.7 as compared with an un-optimized 
hardware configuration. High accuracy, real-time detection, 
simplicity, power efficiency and small hardware footprint make 
our approach a good candidate for embedded epileptic seizure 
detection implementation. 

Keywords- Biomedical Devices, Biomedical Signal Processing, 
Epileptic Seizure Detection,  Reconfigurable Hardware. 

I. INTRODUCTION 
Epileptic seizures are characterized by recurrent atypical 

brain activities with unusual excessive electrical discharges 
[1]. Persons suffering from episodes of such abnormal brain 
functions are referred to as having epilepsy. The physical 
symptoms of seizure can range from none to unprovoked 
muscle contractions, numbness, visual anomaly, loss of 
memory and loss of consciousness. Such episodes can be of 
very short duration or can be continuous until intervention 
occurs. Epilepsy is a chronic neurological disorder affecting 
about 50 million people around the world [2]. One of the 
commonly used methods of diagnosing epilepsy is by 
measuring brain electrical activity with scanning 
electroencephalography or EEG signals. A patient suffering 
from seizure is often required admittance to a healthcare 
facility where his or her EEG is recorded over a prolonged 
period of time. Such records help in obtaining specific 
characteristics of the seizure and determining the precise 
location of the origin of seizures in the cases where surgery is 
needed to treat the seizure occurrences.  

For the purpose of diagnosis, the EEG records are carefully 
inspected by an experienced health professional to detect the 
seizure’s onset and characteristics. An automated detection 
method for epileptic seizure can be helpful as it can perform 

this tedious and lengthy inspection process without human 
intervention, and the findings can be used to aid the final 
diagnosis by a clinician. In the context of a healthcare facility, 
such automated detection mechanisms can save significant 
amount of doctors’ time. It can also reduce the number of 
clinical visits that the patient has to make and the amount of 
time she has to stay in the hospital for such diagnosis 
procedures if it can potentially be performed at home. Also, 
when used on a patient in a home setting, this automated 
system can generate an alarm and a request for medical help 
when positive detections are made.  

The general trend in developing embedded biomedical 
devices for health monitoring has focused on analysis of 
signals for visualization purposes or development of high 
accuracy detection algorithms using complex signal 
processing and statistical computations, without considering 
the real hardware implementation constraints. An important 
consideration in implementing wearable embedded devices is 
battery life. Generally, microprocessors, because they are less 
power-efficient than special low-power processors, are not 
capable of satisfying this requirement. On the other hand, 
accurate analysis of different biomedical signals can easily 
lead to a high degree of computational complexity and 
requires significant processing power that commercial off-the-
shelf (COTS) microcontrollers (e.g. TI MSP430 family [3]) 
cannot support. Moreover, although the low-power DSP 
processors (e.g., TMS320 DSP family from TI [4] and 
SHARC floating-point DSPs from Analog Devices [5]) 
support high-performance and power efficiency for medical 
applications, they limit the degree of flexibility and 
customization often demanded for implementation of 
embedded health monitoring systems and still cannot achieve 
the power efficiency of custom implementations.  

This paper presents design, implementation and evaluation 
of embedded low-power hardware for accurate automated 
detection of epileptic seizures. The specific contributions of 
this study are:  
• Design and FPGA (field programmable gate array) based 

implementation of embedded hardware for the EEG signal 
processing and automated real-time detection of seizure 
events. 

• Evaluation of the prototype hardware configurations ((i) 
sample entropy and ANN (artificial neural network),(ii) 
variance and predetermined threshold value, and (iii) 
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variance and ANN) in terms of: accuracy of detection and 
utilization of hardware resources. Our measurements 
indicate that the detection scheme which combines use of 
variance (for feature extraction) and ANN (for 
classification) achieves high detection accuracy (99.18%) 
with moderate hardware footprint (consumes about 44% of 
the FPGA resources).  

• Evaluation of algorithmic and architectural optimization 
techniques to reduce hardware overhead and power 
consumption while preserving the high detection accuracy. 
The measurements (for the variance and ANN 
configuration) show that: (i) reduction in precision of the 
fix-point number representation and (ii) reuse of hardware 
components can significantly reduce the hardware 
footprint (by factor of 4.4) and power consumption (by 
factor of 2.7) as compared with an un-optimized hardware 
configuration. 

II. RELATED WORK 
There are two distinctive approaches taken for automated 

seizure detection: software- or hardware-based solutions.  
For software-based epileptic seizure detection, the 

widespread availability of powerful computing platforms and 
sophisticated signal-processing/statistical analysis tools have 
led to a great deal of attention on non-linear neural network-
based classifiers. [6] has shown the usefulness of multiple 
signal classification (MUSIC), autoregrssive (AR), and 
periodogram to compute power spectral density (PSD) of 
patient EEG signals. The PSD is fed to conventional logistic 
regression (LR) as well as multilayer perceptron neural 
network (MLPNN) classifiers where the MLPNN 
outperformed the LR method with both methods generating 
accuracies over 88%. Computing embedding dimension of 
EEG using Cao’s method followed by probabilistic neural 
network (PNN) is employed in [7] with accuracy reaching 
100%. The time and frequency multi-scale property of wavelet 
transformation (WT) is exploited in [8] as a variant called 
lifting-based discrete wavelet transform (LBDWT) along with 
LR and MLPNN; accuracy for both classifiers were around 
90%. Patnik et al were able to reach accuracy near 99% using 
similar WT technique but employing a genetic algorithm to 
obtain the training set to be fed to the neural network along 
with harmonic weights as post-classification optimizations to 
boost the accuracy [9]. The Lyupunov exponent, a dynamical 
measure of the stability of a steady-state behavior, is 
investigated in [10] along with WT and PSD for feature 
extraction from the EEG time series. Used with an MLPNN, 
an accuracy of 96.3% was achieved. Methods based on 
entropy that quantify the randomness in a time series have also 
proved to be of considerable value for EEG signal analysis. 

[11] investigated approximate entropy with the Elman neural 
network and PNN showing accuracy up to 100%.  Spectral 
entropy was used in [12]  with a variant of recurrent neural 
network to achieve accuracy of 99.6%. Recently, Kumar et al 
have compared wavelet entropy, sample entropy, and spectral 
entropy used with the recurrent Elman network for identifying 
seizures with accuracy up to 99.75% [13]. [14] presents a 
comparison of a variety of seizure detection approaches based 
on different kinds of signal processing and statistical methods. 

Wearable hardware embedded devices capable of 
capturing and analyzing EEG signals and detecting epileptic 
seizure onsets have attracted attention in recent years. An 
ASIC implementation of seizure detection using root mean 
square, number of maxima and minima, line length, and non-
linear energy is realized by Patel et al in [15]. Using low 
power optimization techniques such as data bit width 
reduction, down-sampling, and other hardware 
approximations, they have managed to keep the power 
consumption of the design to 10.8 µW with accuracy of 
87.7%. [16] used a flexible threshold based event and inter-
event-interval measurements to detect seizures that achieved 
an accuracy of about 80%. A programmable threshold, along 
with computation of rhythmicity is studied in [17], achieving a 
sensitivity of 95.3% and a selectivity of 88.9% while 
consuming less than 350 nW of power. Similar low power 
approaches are taken in [18] and [19]. 

As is evident from the discussion above, the software-
based approaches utilize sophisticated and often 
computationally intensive algorithms for feature extraction as 
well as classification without regard to detection latency, 
hardware cost, or power consumption. For the hardware based 
detectors, the main focus tends to be on low power 
consumption to achieve extended battery life often at the cost 
of lower overall accuracy. The focus of our study is to provide 
a small footprint and low power hardware design and 
implementation for epileptic seizure detection algorithms 
while achieving a detection performance comparable to 
software-based approaches.  

III. AUTOMATED SEIZURE DETECTION 
The overall process in automated EEG-based seizure 

detection is shown in Figure 1. EEG signal processing starts 
with the collection of analog electrical waveforms obtained 
from electrodes placed on the scalp using the international 10-
20 system [20]. The analog waveforms are sampled at a 
desired frequency using ADC, filtered for noise and artifacts 
(due to movement, power-line interference), and fed to the 
feature extraction stage.  

 

 
Figure 1. EEG based seizure detection flow. 
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Figure 2. Normal EEG and epileptic seizure EEG. 
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Figure 3. Sample Entropy and Variance Features extracted from normal and seizure EEG data of Figure 2. 

As mentioned earlier, the amount of randomness is a 
characteristic that differentiates normal EEG from epileptic 
seizure EEG. As evident in Figure 2, normal EEG signal is 
more random than seizure EEG signal which has more 
predictable regular spikes. Such observation implies the 
applicability of SampEn as a measure of randomness to detect 
seizure waveforms from normal ones. For this paper, we chose 
m = 1 as suggested in [22] and r = 0.0001 (standard deviation 
of data set). The top graph in Figure 3 shows the SampEn plot 
of two data sets calculated using N = 42, where the SampEn 
values (3 to 5.5) for normal EEG are significantly larger than 
that of seizure EEG (0.5 to 2.5). 

B. Variance for Feature Extraction 
Variance is a measure of the variation of the data set from 

its mean. For a set of sample points x1, x2, …, xN the variance of 
the set is calculated as: 

( )∑
=

−=
N

i
i xx

N 1

22 1σ          (2)                  

where x  is the mean of the set. A high value of variance 
indicates that the set of data has wide deviation from the mean 
while a small variance indicates closely-spread data. In the case 
of EEG data, the epileptic seizure is characterized by high 
amplitude spikes which are not present in normal data. Hence, 
for a given time window, the spread, i.e. the variance of data 
samples in seizure data, should be significantly higher than that 
of normal data. This indicates that variance can be used as a 
feature extraction method to differentiate between seizure and 
normal EEG data. The result of computing variance for 10 
seconds of normal and seizure data are shown in the bottom 
plot of Figure 3. In both cases, each 1-second window of data 
has been divided into 4 sections and then variance is computed 
for each section. Also, the computed variance values have been 
scaled down to minimize the number of digits needed for 
representation and hence reduce the complexity of 
implementation in hardware.  

C. Artificial Neural Network for Classification 
A multilayer perceptron artificial neural network (ANN) is 

a non-linear classifier that incorporates the biological model of 
connected neurons. It maps a set of inputs to a set of outputs 
using weights to minimize the difference errors. Theoretically, 
an ANN can map an arbitrary complex relationship with an 
acceptable error margin. Generally, a neural network consists 
of an input layer, one or more hidden layer and an output layer. 
Each layer consists of neurons whose exact number is 
determined by trial and error. For example, a 4-3-1 neural 
network [23] with 4 input neurons, 3 hidden layer neurons, and 
1 output neuron is shown in Figure 4. Each neuron is connected 
to all the neurons in the previous layer with specific weights 
associated with each of the connections. These weights are 
determined based on the importance of the connections. The 
computation of a neuron output is performed in two stages. 
First, the weighted sum of the outputs of the connected neurons 
is calculated as multiply-add (MAC) operations. Next, an 
activation function is used to restrict the neuron output to a 
predefined range [24]. It relates the weighted sum result to a 
bounded set of values based on the specific function used to 
implement the relation. The activation function works as a 
source of non-linearity in the ANN structure. 

 
Figure 4. ANN with 4-3-1 configuration. 

V. IMPLEMENTATION 
While our final goal is an ASIC implementation of 

embedded seizure detection, for the purpose of prototyping a 
reconfigurable hardware, a field programmable gate array 
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(FPGA) platform is chosen for this work. The target FPGA is 
the 90nm Stratix II EP2S60F672C3 by Altera with 48,352 
adaptive look-up tables (ALUTs) and the same number of 
dedicated logic registers. The MATLAB [25] software was 
used to perform the initial test implementation of the sample 
entropy [26] and variance. The results from MATLAB were 
then used with the multiple back propagation software tool 
[23] for ANN training. From the 200 data sets obtained from 
the EEG database, 120 (60 from set A and 60 from set E) were 
used for training and the remaining 80 were used for testing of 
ANN with the multiple back propagation software tool. Based 
on experiments, a 4-3-1 ANN with satisfactory low mean 
square error (~0.03) was chosen. For the actual hardware 
implementation, the MATLAB codes along with the ANN 
were coded in hardware description language. The weights 
obtained from the ANN software at the end of the training 
phase were used as constant weights for the testing phase in 
hardware. While the ANN software [23] had the options of 
using sigmoid, tanh, Gaussian, and linear functions as the 
activation function for neuron computation, in order to 
minimize required computation and resultant hardware cost 
we used the linear function of F(x) = kx (where k is a constant) 
for activation of the hidden layer. However, for the single 
neuron on the output layer, we had to use the non-linear 
sigmoid function of 

kxe
xF −+

=
1

1)(  for activation to achieve 

high detection accuracy. In both cases, x is the weighted sum 
of the inputs that are connected to a given neuron. 

In order to maintain the real-time constraints, the entire 
detection computations on 1 second of sampled EEG data 
should be performed within 1 second. For example, data 
sampled within the ith second should be processed while data 
for the (i+1)th second is being buffered and the processing 
should complete before data for the (i+2)th second starts to 
arrive. The data processing configuration is shown in Figure 5. 
For processing the EEG data sampled at 173 Hz, each 1 
second of data is buffered and divided into 4 windows, each 
containing 42 samples. 

Figure 5. Processing configuration. 

In the feature extraction phase, 1 SampEn or variance 
value is computed based on the 42 samples of each of the 
windows. The 4 feature values obtained are then applied to the 
4-3-1 ANN to obtain the final binary detection result. 

VI. EVALUATION RESULTS 
In this section, we present the evaluation results for three 

different implementations which correspond to combinations 
of (i) sample entropy and ANN, (ii) variance and 

predetermined threshold value, and (iii) variance and ANN. 
We also discuss and assess a number of design optimizations 
to reduce the hardware complexity and power consumption. 

A. Hardware Utilization and Performance 
The detection performance in terms of accuracy, sensitivity 

and specificity is shown in Table I. Both of the feature 
extraction algorithms (SampEn and variance), when 
accompanied with an ANN classifier, provide high detection 
accuracy of more than 99%. Although the differences are 
small, SampEn is superior to variance in terms of accuracy as 
well as specificity. On the other hand, using a predetermined 
threshold comparison for classification stage provides the best 
performance in terms of sensitivity but the overall accuracy is 
reduced. 

The amount of ALUTs utilized for the detection processes 
based on ANN classification are shown in Table II. The 
SampEn along with an ANN classifier requires more resources 
than the target FPGA can provide. One reason for such large 
amount of logic usage is because of SampEn’s inherently 
sequential nature of computation that requires a significant 
amount of sample history to be stored in the buffers. Also, the 
algorithm requires the computation of a nested loop which 
exhibits loop counter dependency and hence destroys any 
parallelism that can be extracted from it. On the other hand, 
the variance module requires a significantly smaller logic 
count for onboard implementation because of the absence of 
the loops and presence of rather simple operations.  

Therefore, the third detection scheme, based on the 
variance accompanied with ANN, provides the best balance 
between detection accuracy and hardware usage.  

TABLE I.  DETECTION PEFORMANCE 

Measurement 
SampEn + ANN 

 (%) 

Variance + 
Threshold 

(%) 

Variance + ANN 
 (%) 

Overall 
Accuracy 

99.73 98.52 99.18 

Sensitivity 99.46 99.47 98.60 

Specificity 100.00 97.61 99.78 

TABLE II.  HARDWARE FOOTPRINT 

SampEn + ANN Variance + ANN 

Module ALUT 
Usage Percentage Module ALUT 

Usage Percentage 

SampEn 36964 76.44 Variance 2490 5.15 

ANN 15432 31.91 ANN 18683 38.64 

Total 52396 108.35 Total 21173 43.79 

B. Optimizations 
In this section we investigate optimization techniques in 

the implementation of variance plus ANN-based detection 
scheme to reduce complexity and power consumption. 

Two major components of power consumption on 
reconfigurable hardware are static power and dynamic power. 
Static power is mostly technology-dependent and is consumed 
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regardless of the logic operations in the circuit. Dynamic 
power is the power consumed because of the switching 
activities when the logic circuit is operational. The following 
optimization techniques are primarily focused on improving 
the dynamic power consumption by reducing logic elements 
and signal activities in the design. It should be noted that, 
while the power consumption analysis performed here is 
aimed at FPGAs, the proportion of power consumption by 
different components of the detection scheme would be largely 
similar for an ASIC implementation. 

1) Reduced Precision. Most of the computations for the 
ANN part of the design were initially implemented using 32-
bit fixed-point numbers. The format of a fixed-point number is 
sign bit (s) + integer bits (i) + fraction/precision bits (p). As an 
optimization we considered lowering bit width representation 
without compromising the detection performance. Table III 
shows the impact of reduced precision on performance. p = 5 
bits of precision along with i = 9 bits for integer part and s = 1 
bit for sign needs a total word-length of 15 bits which provides 
the best acceptable accuracy results of 99.08% detection rate. 
Hence, all the fixed-point numbers were reduced from 32 bits 
to 15 bits representation. Arithmetic operations using fixed- 
point numbers were also scaled accordingly to maintain the 
same scaling factor. The sigmoid function in the ANN was 
also approximated as a look-up table to reduce computation in 
hardware.  

TABLE III.  PRECISION AND PERFORMANCE 

Precision 
(bits) 

Total Word-
Length 
(bits) 

Overall 
Accuracy (%) 

Sensitivity 
(%) 

Specificity 
(%) 

1 11 47.45 100.00 48.75 

2 12 84.02 68.04 100.00 

3 13 92.23 86.45 100.00 

4 14 96.47 93.49 99.88 

5 15 99.08 99.24 98.92 

2) Folding for Component Reuse. If a hardware process 
has relaxed time constraints for completing its tasks, which is 
often the case in biomedical domain applications such as 
automated seizure detection, then a folding technique can be 
employed to reuse redundant components over time instead of 
performing parallel computation in a single clock cycle. While 
folding reduces the logic area utilization by removing 
unnecessary parallel components, additional control logic to 
perform the time-multiplexing/scheduling and memory to 
store intermediate values must be employed. Since the ANN 
structure has parallel neurons in the hidden layer and the 
output layer, folding is used to break the parallelism with a 
scheduling logic, as shown in Figure 6. The top diagram is the 
parallel ANN from which the folded architecture, shown in the 
bottom of the figure, is obtained. The time period for the 
scheduler is 4 cycles where the first 3 cycles complete the 
hidden neuron computations and then the results are fed back 
for the final output computation in the last cycle. Appropriate 
delays are implemented in the form of storage registers shown 

as nD in the figure. Similar folding has also been used for the 
input normalization phase of the ANN. 

 

Figure 6. Folding for neuron computation. 

3) Pipelining. Pipelining can effectively reduce the 
propagation delay in architecture by employing intermediate 
delays to break long paths. Although pipelining can result in 
increased use of registers to store intermediate values of the 
pipelined stages, this added footprint can be compensated by 
savings in power consumption as the computation paths are 
shortened in the pipelined architecture. The computation of a 
neuron in the ANN consists of repeated multiply-add (MAC) 
operations followed by the sigmoid function calculation, as 
shown in the top diagram of Figure 7. All these operations, 
which are computed in one clock cycle, can be broken down to 
multiple stages with intermediate storage registers to be 
pipelined as shown in the bottom diagram of Fugure 7. In this 
figure, Mi, Ai, and regi stand for multiplier, adder, and register 
respectively. The output of register 3 is used to compute the 
sigmoid function.  

 
Figure 7. Pipelining the neuron computation. 
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The area and power consumptions of the original hardware 
implementation and the comparative savings for the different 
optimizations in those two factors are shown in Table IV. 
Reduced precision and folding are found to be effective in 
significantly reducing logic usage as well as dynamic power. 
Less precision occupies less logic and hence contributes to 
reduced dynamic power as there are fewer logic signals that 
toggle for a given time window. Similarly, compared to the 
reduced precision version, adding folding saved area by 
28.21% by reusing the same logic, which also resulted in 
reduced signal switching by spreading the signal activities of 
the parallel logic over multiple cycles to give power saving by 
43.16%. However, the power consumption improvement 
resulting from pipelining was masked by the comparatively 
larger increase in power because of increased signal activities 
for the intermediate storage elements. 

TABLE IV.  AREA AND POWER CONSUMPTIONS 

Architecture/ 
Optimization 

Resource 
Usage 

(ALUTs + 
Registers) 

Resource 
Usage 

Decrease 
(%)  

Dynamic 
power 
(mW) 

Power Saving 
(%)  

Un-optimized 21472 -- 4.3 -- 
Reduced 
precision 6828 68.20  2.85 33.72  

Red. prec. + 
Folding 4902 77.17  1.62 62.33  

Red. prec.+ 
Fold.+ Pipeline 5022 76.61  1.63 62.09  

 
The trend in dynamic power consumption over different 

proposed optimizations is shown in Figure 8. A small increase 
in register count can be seen in ANN folding and pipelining 
because intermediate values are stored. This also resulted in the 
increased dynamic power in the ANN for the two 
optimizations, as can be seen in Figure 8. However, a balance 
between overall area and power usage is found in the 
cumulative optimizations of reduced precision and folding. For 
this stage of the hardware, about a 77.17% ((21472-
4902)/21472*100) savings in total resource usage and a 
62.33% ((4.3-1.62)/4.3*100) reduction in total dynamic power 
over the un-optimized implementation is achieved without 
compromising the performance of 99.08% overall accuracy.  

 
Figure 8. Power consumption vs optimizations. 

VII. CONCLUSIONS 
We presented an efficient hardware implementation for real 

time automated seizure detection with high accuracy and low 
hardware overhead and power consumption. The experimental 
results show that by using a variance method for feature 
extraction accompanied with an artificial neural network 
(ANN) for classification we can achieve a high degree of 
accuracy (99.18%) while introducing a limited amount of 
hardware overhead. Also, by performing further optimization 
techniques, the hardware complexity and power consumption 
could be reduced as much as 77.17% and 62.33% respectively. 
This custom implementation can later be used in a more 
generic reconfigurable platform for biomedical processing. 
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