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Abstract 

 
In this paper we propose a fault-tolerant architecture 
for mesh-based network on chips to recover from 
permanent faults in switches. We add a number of 
spare links between processing elements and their 
neighboring switches and some logic redundancy to 
network elements. Also online fault detection and 
correction strategies are presented for this 
architecture. We model and simulate the 
communication behavior of the proposed architecture 
and recovery methods using TLM. Fast simulation 
speed of TLM as a high-level description language 
helps us in easy design exploration of our fault- 
tolerant architecture and finding the most efficient 
architecture for it. Later in the design process, it is 
possible to refine this TLM model to lower abstraction 
levels and synthesize it to an actual hardware.  
 
Index Terms — Fault-tolerant Architecture, Networks 
on Chip, Transaction Level Modeling  
 
1. Introduction 
 

With the advance of the semiconductor 
technology, and the increase in complexity of 
integrated circuits, networks on a chip are becoming 
the main solution for addressing the communication 
challenges in System-on-Chip architectures. Using 
NoCs leads to more performance improvement than 
traditional communication structures in SoCs like bus-
based communication and dedicated point-to-point 
links [1].  

On the other hand, Transaction Level Modeling 
(TLM) is regarded today as the next step in the 
direction of complex integrated circuits and systems 
design entry. Design, modeling, and simulation in 
higher levels of abstraction like TLM provide 
designers with faster simulation. This helps them in 
early design space exploration, task partitioning and 
better testbench developing leading to a shorter time to 

market. Contrary to this movement to TLM abstraction 
level for digital system design, most common 
approaches for fault modeling and simulation, test 
methodologies and fault tolerance approaches are still 
at the RT and gate level. Therefore, an important need 
for high-level design methodologies is developing 
methods for high level testing and repair of digital 
systems. 

Most of the researches in the field of fault-tolerant 
NoC architectures concentrate on tolerating transient 
errors by adding information redundancy like coding 
methods. Adding hardware redundancy with error 
detection is another method for fault-tolerant that is 
used less in this area. [2] presents a self-repair method 
based on using redundant links and cross-points to 
increase yield and reliability for NoC interconnects.  
[3] takes advantage of both methods of information 
and hardware redundancy for tolerating transient, 
permanent and intermediate faults. [4] proposes a 
semi-regular mesh based NoC architecture, where 
without changing the regular structure of an NoC a few 
long range spare links are added to improve the 
performance. Although these spare links have been 
used with the aim of performance improvement in 
NoC, but they can be useful as redundant links to 
increase reliability as well.  

The fault tolerant mesh-based NoC architecture 
we present here recovers from a single switch fault by 
adding a spare link between each processing element 
and one of its neighboring switches. In this 
architecture we do not require any repeater modules, as 
those used in [4]. Also contrary to [2] we propose fault 
detection/correction strategies accompanying with the 
hardware redundancy used in our architecture. We take 
advantage of TLM SystemC 2.0 [5] as a high-level 
hardware description language focusing on separation 
of computation and communication parts for modeling 
and fast simulation of our NoC architecture. High-level 
NoC model presented here has been cut down by 
hiding computation details and just modeling the 
communication behavior of the NoC system.  



The rest of paper is organized as follows. In Section 
2 we introduce the basic NoC architecture model we 
used in our work, and will present an overview on 
transaction level modeling. Section 3 describes the 
proposed fault tolerant NoC architecture. We present 
our TLM simulation methodology and experimental 
results in Sections 4 and 5 respectively. Finally we 
conclude our paper in Section 6. 
 
2. Background 
 

In this section we present the simplified model of 
NoC architecture used in the analysis and methods of 
this paper. In addition, a brief overview of TLM as our 
modeling scheme for NoCs will be presented here.  
 
2.1. NoC Architecture 
 

The primary NoC topology which is used in this 
paper is a simple regular mesh-based architecture. 
Figure 1.a shows a 3 3 version of this architecture, 
where PEi is the ith processing element and SWi is the 
switch directly connected to it. 
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Figure 1. (a) A 3×3 mesh-based NoC architecture,  
(b) Structure of a NoC switch 

 
In this architecture each switch consists of two 

parts: a communication section composed of five 
identical input/output ports and a routing logic as is 
shown in Figure 1.b. All the switches have one port 
connected to their corresponding processing element 
and the others to neighboring switches. Each port is a 
bidirectional link, where the input link goes through a 
circular FIFO as buffer for storing the incoming 
packets.  

The packet structure is defined based on the 
communication protocol, the necessary features like 
QoS, and the application mapped onto the NoC 
architecture. We have considered only the most 
common fields, including a header that determines the 
source and destination addresses, and a data payload 

containing some information about the path the packets 
pass through. When a packet arrives on one of the 
input ports of a switch, it is stored in the input FIFO 
waiting for the router to send it to the proper output 
port. A round robin algorithm determines the next 
packet to be routed, and the output port is selected 
using X-Y routing algorithm. 

Each processing element in this NoC consists of a 
processing unit and a network interface. The network 
interface part is responsible for communicating with 
the switch directly connected to the processing element 
by formatting the output packets. 
 
2.2. Transaction Level Modeling 
 

With the increase in complexity of digital systems 
and shrinking time to market, Electronic System Level 
(ESL) design has become a design methodology for 
implementing large digital systems. ESL industry has 
introduced transaction level modeling (TLM) as the 
next step in the direction of system level design entry. 

TLM is a transaction-based modeling approach 
founded on high-level programming languages such as 
SystemC. It highlights the concept of separating 
communication from computation within a system. In 
the TLM notion, components are modeled as modules 
with a set of concurrent processes that calculate and 
represent their behavior. These modules exchange 
communication in the form of transactions through an 
abstract channel. Based on the degree of modeling 
accuracy, we have two fundamental classes of TLM: 
Un-timed TLM, also known as programmer’s view 
(PV) and timed TLM that is given another name as 
programmer’s view plus timing (PVT) [6].  

Since starting the design process with a very high-
level model like un-timed TLM ignores many details 
and timing annotations in design specification, the 
number of events that must be processed by a 
simulator decreases dramatically. This results in a 
faster simulation than lower modeling levels like RT 
and gate level. Therefore designers can decide on 
problems like module partitioning, system 
functionality, and developing test benches in a more 
organized fashion at early stages of design.  
 
3. Fault-Tolerant NoC Architecture 
 

In this section we discuss the problem we are 
addressing and our proposed solution. First our 
proposed fault-tolerant architecture is introduced and 
then an appropriate method for online fault detection 
and recovery in this architecture is presented. 

 



3.1. Problem Statement 
 

In the regular mesh-based NoC architecture 
presented in Section 2, each processing element is 
connected to a single switch via a single link. If this 
link or the whole switch becomes faulty, then the entire 
system would face two problems. First, the switch's 
directly connected processing element becomes 
inaccessible, because its only communication link to 
the rest of network is broken. The second problem is 
that the faulty switch cannot be used anymore for 
routing and passing packets, therefore routing 
algorithm should be changed accordingly to bypass it. 

In order to solve these problems, we propose a 
fault tolerant NoC architecture in which a spare 
interconnect is added between each PE and one of its 
neighboring switches. Figure 2 shows all possible 
spare links for PE5 that can be added to the regular 
3×3 mesh-based NoC when SW5 becomes faulty.   

 

Figure 2. Possible spare links for  
PE5 when SW5 becomes faulty 

 
Although adding all the possible spare links to all 

processing elements increases the overall reliability, 
but also changes the overall NoC topology and leads to 
a high cost in terms of hardware redundancy. Adding 
spare links to a PE require additional in/out ports and 
input FIFOs for the processing element for each of the 
corresponding switches. Also some logic should be 
added to the network interface part of the PE to handle 
multiple spare links connected to it. In order to avoid 
this cost in our architecture, we just choose one of the 
possible spare links for a processing element.  

The best spare link to be added to a processing 

element is chosen among different possibilities based 
on a performance analysis that we perform in our high-
level NoC simulation model.  

In this architecture a simple logic is added to the 
network interface of each PE. This logic stores the ID 
of the added spare link and sends packets via this new 
link in the case of fault detection. Each switch has an 
embedded BIST module responsible for continuously 
testing its operation and reporting its status by setting a 
fault_status flag. Storing the address of the chosen 
alternative switch and logic for changing the routing 
algorithm for bypassing the faulty switches is also 
necessary in each switch. In addition, we need two 
new control fields for each packet: an n-bit field (in a 
n×n NoC) named FSN for keeping the location of the 
faulty switch in the NoC, and a flag called CR for 
indicating cases in which the routing should be 
changed. 
 
3.2. Online Fault Detection and Recovery 

 
This work focuses on permanent single faults 

occurring in NoC switches. The embedded BIST 
structure in each switch continuously updates its 
fault_status to report the status of the switch. 
Neighboring switches and processing elements check 
this flag before starting any communication with the 
switch. A switch, even in the case of being faulty, 
should be capable of informing its neighbors of its 
faulty status and sends them the ID of the switch used 
as its alternative. 

Consider switch i in Figure 3 as a faulty switch 
detected in the NoC. Say, for example, that we choose 
to connect its PE to SWi-1 with a spare link. When PEi 
or each of j, i+1, k, and i-1 switches intend to send a 
packet to i, they check its fault_status flag to become 
sure that this switch works properly. Finding out that 
switch SWi is faulty, PEi and the neighboring switches 
(j, i+1, k, and i-1) arrange different strategies to 
recover from this fault. 

PEi sends its packets through SWi-1 instead of SWi 
as shown in path (a) of Figure 3.  The network 
interface part of PEi sets the value of FSN field of 
packets to i, the ID of the faulty switch, and if the 
destination is i, it changes it to i-1, the ID of the 
alternative switch.  

In addition to PEi the neighboring switches should 
also change their routing strategy to avoid passing 
packets through the faulty switch. When each of of the 
neighboring switches, j, i+1, k, or i-1, are to send a 
packet to switch i, and detect that it is faulty, they 
change the routing for sending the packet to this 
switch. This re-routing strategy takes place based on 



the destination of the outgoing packet. First of all the 
FSN field of the packet is set to the ID of faulty switch, 
and the destination field is checked; if the destination 
is i, it is changed to i-1. Also if the selected output port 
is horizontal (i.e., via ports 2 or 4), the packet is sent to 
one of the vertical output ports 1 or 3 based on the 
destination column. However, if the selected output 
port causes a vertical movement (i.e., via ports 1 or 3), 
the CR field of the packet is set to change the routing 
strategy from X-Y to Y-X algorithm. Then the packet is 
sent to one of the horizontal output ports 2 or 4 
according to its destination. When a switch receives a 
packet with the CR field set to Y-X, it routs the packet 
using the Y-X algorithm instead of the default X-Y.  

Switches used as alternative switches also need 
their own recovery strategies for dealing with a faulty 
switch.. When a packet, with destination i-1 reaches 
the alternative switch i-1, it should be sent to PEi or 
PEi-1 based on the FSN field. If FSN is equal to i the 
packet is routed to the new connected PEi instead of 
PEi-1. 
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Figure 3. Fault detected in SWi,  

(a) PEi spare link to alternative switch, (b) Rerouting path 
for a horizontal case, (c) Rerouting path for a vertical case 

 
As stated before, X-Y is the default routing 

algorithm, and we choose Y-X as an alternative method 
in vertical movements in the network. In case of a fault 
in a neighboring switch, if the output port is horizontal, 
then according to X-Y, we have three situations based 
on the row of the destination PE. If the destination is in 
a row above the current position, the packet is sent to 
port 1, and if it is in a switch below the current one, 
then the packet is routed to output port 3. Otherwise 
this row is the destination row and the packet is 
arbitrarily sent to one of the vertical ports to bypass the 
faulty switch. In any of the three cases stated above, 

the packet goes to the next row and the X-Y routing 
algorithm will not let the packets to return back to this 
row, except in the case that the destination is the faulty 
switch and the spare link is attached to a switch in this 
row. This procedure avoids any deadlocks in the 
routing. For example, consider the case in which a 
packet is to send to PEi-2 from switch i+1. Even this 
case will not cause a deadlock since if switch j+1 is 
chosen as the next destination instead of i, the packet 
traverses switches j+1, j, j-1, j-2, and i-2 according to 
the X-Y algorithm. See path (b) in Figure 3. 

Similarly, in the case of confronting a faulty 
switch via vertical output ports, after changing the 
destination field, if needed, the packet should be re-
routed. If the destination is in a column to right or left 
of the current column, the packet is sent to output ports 
2 or 4 respectively. But this will cause a deadlock in 
the case that the destination is in the same column of 
the source switch. This is because (based on the X-Y 
algorithm), the next switch will send back the packet to 
the source in order to pass it vertically through the 
same column. As an example see the highlighted path 
(c) in Figure 3. If j tries to send a packet to k, then 
according to the recovery strategy it sends the packet 
to switch j+1 instead of i, if the routing algorithm 
remains X-Y, j+1 will then send the packet back to j 
and again encounter to faulty switch SWi. This will 
continue forever, leading to a deadlock situation. The 
CR field we introduced in our strategy is for 
preventing this situation by telling the next switches to 
route this packet by the Y-X algorithm instead of X-Y. 

The proposed routing/re-routing method can be 
implemented by look up tables for X-Y and Y-X 
algorithms similar to what is presented in [7] with 
some additional logic for switching between them. 

 
4. Simulation Method  

 
This section shows how we find the best fault 

tolerant NoC architecture for a specific input 
application mapped onto an NoC. A scheduled and 
bounded task graph of the application mapped onto the 
NoC architecture is used as input and faults are 
injected into different switches of this structure. Then 
we simulate different spare link selection possibilities 
in the presence of each fault, and compute the worst-
case delay of system in each case. This way, the best 
spare links in terms of the minimum worst-case delay 
to be added to the fault-tolerant NoC architecture are 
chosen for the input application.  

We have implemented the NoC architecture 
presented in Section 3 in SystemC TLM 2.0 library.  
Switches and processing elements are modeled as 



SystemC modules with SC_THREAD processes 
implementing their behavior. Links between the 
modules that NoC packets travel through are modeled 
by tlm_fifo channels. These channels are for modeling 
unidirectional data transfers. We take advantage of 
TLM approximate-time abstraction level for modeling 
and performance evaluation of our system. Therefore, 
without considering timing details and just by using a 
number of wait()statements we can model the traffic 
seen by each packet in every switch in high-level.  

Furthermore, since we concentrate on the faults in 
switches as communication elements of NoC and 
consider spare links for recovery from these faults, the 
critical bottleneck would be the communication 
performance of system after applying our healing 
method. Therefore we just focus on the communication 
behavior of the NoC architecture and ignore the 
computation details of processing elements and 
switches in our model.  TLM features for separation of 
communication and computation parts within a system 
help us in reaching this goal. 

At the start of simulation, each processing element 
distinguishes its own tasks and stores the information 
about its entering and outgoing packets from a specific 
input application defined by a communication task 
graph (CTG) like what is presented in [8]. A CTG is a 
directed acyclic graph, where each vertex represents a 
computational module of the application referred to as 
a task [9]. The edges represent the communication with 
adjacent nodes, and the weight on each edge is equal to 
the communication volume between tasks. This 
representation characterizes the partitioning, task 
assignment, scheduling, communication patterns, and 
task execution time of an application [8]. The 
execution of the mapped input application onto the 
NoC architecture is simulated based on the task 
orderings and timings derived from this input CTG.   

We consider the worst case delay of the system as 

the evaluation parameter for our proposed architecture. 
After arrival of each packet to its destination, its delay 
is calculated based on the timing information it carries 
inside. This timing information includes the number of 
passed switches, inter-switch links, network interface 
to switch wrappers, processing elements seen, and the 
turns wasted waiting in the input FIFOs of switches. 
Since we have cut down our model and do not 
consider detailed timing annotations at the lower 
abstraction levels, just a rough estimate of delay which 
represents relative values is sufficient for comparison 
of results. So the delay for each switch is calculated as 
a weighted sum of the above timing parameters. Also 
in order to ease the process of monitoring packets 
traveling through the network, each source PE sends 
an end-data packet after each transmission of a burst 
data. The overall worst-case delay of the system is 
estimated by the maximum delays of end-data packets 
arriving at the last destination. 
 
5. Experimental Results 
 

In this section we present our simulation results 
for a complex multimedia application (MMS). The 
input CTG used in our simulation is shown in Figure 4. 
This is the communication task graph of a complicated 
MMS application, including an MP3 and H263 
encoder and decoder [10]. In [10] this system is 
partitioned into 40 tasks, scheduled and then bounded 
to 16 distinct IPs including ASIC, Memory, CPU, and 
DSP cores. The scheduled and bounded CTG has been 
greedily mapped onto our 4 4 mesh-based NoC 
architecture as is shown in Figure 4. Then we simulate 
this mapped application using the TLM simulation 
method presented earlier. Figure 5 shows the 
simulation results for injecting faults into switches 1 to 
5 in the 4 4 NoC. The overall worst-case delay of  

 

 
Figure 4. Left: Communication Task Graph for a complex multimedia application (MMS) [10], 

Right: Greedily mapped onto our  4 4 mesh-based NoC architecture 



the system in the case of choosing each of the possible 
alternative switches is shown in this chart. 

The first column shows the worst-case delay in the 
presence of no faults. We can see that applying our 
proposed fault recovery strategy can improve the 
performance compared to the normal operation mode 
when no faults exist in the system. This shows that this 
architecture can also be useful as a performance 
improvement solution for decreasing traffic in an NoC. 
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Figure 5. Simulation Results for CTG of Figure 4,  

Worst-case delay with different alternative switches  
 

As an example of a faulty switch consider the case 
that SW1 becomes faulty. There are three possibilities 
for PE1 to continue its work by using a spare link to 
one of the alternative switches SW2, SW5 or SW6. The 
second column in the chart shows the corresponding 
worst-case delays for each of these choices. Choosing 
SW6 as the alternative switch results in the worst 
delay, while choosing SW2 gives minimum delay. We 
can verify this result by considering our input CTG. As 
shown in Figure 4 the IP core mapped on PE1 is 
DSP3. This figure shows that DSP3 just communicates 
with ASIC4 and DSP5 mapped onto PE4 and PE8 
respectively. It is clear that using SW2 as the spare link 
for PE1is the best choice, because SW2 is the first 
switch in the paths to PE4 and PE8 with an X-Y 
routing algorithm. Connecting PE1 to SW2 is even 
better than the normal mode in which PE1sends its 
packets through SW1. 
 
6. Conclusions 
  

The proposed architecture has several advantages. 
First of all the layout implementation is not needed to 
be changed completely, and contrary to what is 
presented in [4] no additional repeaters is needed for 
the added links. Next, by adding these spare links to 
the NoC, its architecture still remains almost regular, 
this has a minor effect on the fabrication process. 

Furthermore, as a future work we can extend the 
proposed architecture to work in two modes: normal 
and faulty. In the normal mode we can take advantage 

of spare links as a solution for directing traffic from 
busy switches to idle ones and improve the system 
performance. While in faulty mode they act as 
described in this work for bypassing faulty switches 
and improve the reliability.  

On the other hand, the TLM-based simulation 
method presented here is helpful for easy modeling 
and fast exploration of NoC architectures. We take 
advantage of HW/SW co-design capabilities of TLM 
for simulating the execution of a specific input 
application mapped onto NoC and analyzing its 
performance factors, as fast as a software program. 
Also the high level hardware description of the 
architecture can be refined to lower TLM abstraction 
levels to RT level SystemC, which makes it possible to 
be synthesized into its hardware. 
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